Nothing
#' @title Binarize Data
#'
#' @description
#' A utility to binarize a dataset. Given a dataset, this utility converts each
#' value in the desired dimension(s) to 0 or 1; this can be a useful
#' preprocessing step.
#'
#' @param input Input data matrix (numeric matrix).
#' @param dimension Dimension to apply the binarization. If not set, the
#' program will binarize every dimension by default. Default value "0"
#' (integer).
#' @param threshold Threshold to be applied for binarization. If not set,
#' the threshold defaults to 0.0. Default value "0" (numeric).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#'
#' @return A list with several components:
#' \item{output}{Matrix in which to save the output (numeric matrix).}
#'
#' @details
#' This utility takes a dataset and binarizes the variables into either 0 or 1
#' given threshold. User can apply binarization on a dimension or the whole
#' dataset. The dimension to apply binarization to can be specified using the
#' "dimension" parameter; if left unspecified, every dimension will be
#' binarized. The threshold for binarization can also be specified with the
#' "threshold" parameter; the default threshold is 0.0.
#'
#' The binarized matrix may be saved with the "output" output parameter.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # For example, if we want to set all variables greater than 5 in the dataset
#' # "X" to 1 and variables less than or equal to 5.0 to 0, and save the result
#' # to "Y", we could run
#'
#' \dontrun{
#' output <- preprocess_binarize(input=X, threshold=5)
#' Y <- output$output
#' }
#'
#' # But if we want to apply this to only the first (0th) dimension of "X", we
#' # could instead run
#'
#' \dontrun{
#' output <- preprocess_binarize(input=X, threshold=5, dimension=0)
#' Y <- output$output
#' }
preprocess_binarize <- function(input,
dimension=NA,
threshold=NA,
verbose=getOption("mlpack.verbose", FALSE)) {
# Create parameters and timers objects.
p <- CreateParams("preprocess_binarize")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
SetParamMat(p, "input", to_matrix(input), TRUE)
if (!identical(dimension, NA)) {
SetParamInt(p, "dimension", dimension)
}
if (!identical(threshold, NA)) {
SetParamDouble(p, "threshold", threshold)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
# Mark all output options as passed.
SetPassed(p, "output")
# Call the program.
preprocess_binarize_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
# Extract the results in order.
out <- list(
"output" = GetParamMat(p, "output")
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.