Nothing
#' @title Descriptive Statistics
#'
#' @description
#' A utility for printing descriptive statistics about a dataset. This prints a
#' number of details about a dataset in a tabular format.
#'
#' @param input Matrix containing data (numeric matrix).
#' @param dimension Dimension of the data. Use this to specify a dimensio.
#' Default value "0" (integer).
#' @param population If specified, the program will calculate statistics
#' assuming the dataset is the population. By default, the program will assume
#' the dataset as a sample. Default value "FALSE" (logical).
#' @param precision Precision of the output statistics. Default value "4"
#' (integer).
#' @param row_major If specified, the program will calculate statistics
#' across rows, not across columns. (Remember that in mlpack, a column
#' represents a point, so this option is generally not necessary.. Default
#' value "FALSE" (logical).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#' @param width Width of the output table. Default value "8" (integer).
#'
#'
#' @details
#' This utility takes a dataset and prints out the descriptive statistics of the
#' data. Descriptive statistics is the discipline of quantitatively describing
#' the main features of a collection of information, or the quantitative
#' description itself. The program does not modify the original file, but
#' instead prints out the statistics to the console. The printed result will
#' look like a table.
#'
#' Optionally, width and precision of the output can be adjusted by a user using
#' the "width" and "precision" parameters. A user can also select a specific
#' dimension to analyze if there are too many dimensions. The "population"
#' parameter can be specified when the dataset should be considered as a
#' population. Otherwise, the dataset will be considered as a sample.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # So, a simple example where we want to print out statistical facts about the
#' # dataset "X" using the default settings, we could run
#'
#' \dontrun{
#' preprocess_describe(input=X, verbose=TRUE)
#' }
#'
#' # If we want to customize the width to 10 and precision to 5 and consider the
#' # dataset as a population, we could run
#'
#' \dontrun{
#' preprocess_describe(input=X, width=10, precision=5, verbose=TRUE)
#' }
preprocess_describe <- function(input,
dimension=NA,
population=FALSE,
precision=NA,
row_major=FALSE,
verbose=getOption("mlpack.verbose", FALSE),
width=NA) {
# Create parameters and timers objects.
p <- CreateParams("preprocess_describe")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
SetParamMat(p, "input", to_matrix(input), TRUE)
if (!identical(dimension, NA)) {
SetParamInt(p, "dimension", dimension)
}
if (!identical(population, FALSE)) {
SetParamBool(p, "population", population)
}
if (!identical(precision, NA)) {
SetParamInt(p, "precision", precision)
}
if (!identical(row_major, FALSE)) {
SetParamBool(p, "row_major", row_major)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
if (!identical(width, NA)) {
SetParamInt(p, "width", width)
}
# Mark all output options as passed.
# Call the program.
preprocess_describe_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
# Extract the results in order.
out <- list(
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.