Nothing
#' @title Random forests
#'
#' @description
#' An implementation of the standard random forest algorithm by Leo Breiman for
#' classification. Given labeled data, a random forest can be trained and saved
#' for future use; or, a pre-trained random forest can be used for
#' classification.
#'
#' @param input_model Pre-trained random forest to use for classification
#' (RandomForestModel).
#' @param labels Labels for training dataset (integer row).
#' @param maximum_depth Maximum depth of the tree (0 means no limit).
#' Default value "0" (integer).
#' @param minimum_gain_split Minimum gain needed to make a split when
#' building a tree. Default value "0" (numeric).
#' @param minimum_leaf_size Minimum number of points in each leaf node.
#' Default value "1" (integer).
#' @param num_trees Number of trees in the random forest. Default value
#' "10" (integer).
#' @param print_training_accuracy If set, then the accuracy of the model on
#' the training set will be predicted (verbose must also be specified).
#' Default value "FALSE" (logical).
#' @param seed Random seed. If 0, 'std::time(NULL)' is used. Default
#' value "0" (integer).
#' @param subspace_dim Dimensionality of random subspace to use for each
#' split. '0' will autoselect the square root of data dimensionality.
#' Default value "0" (integer).
#' @param test Test dataset to produce predictions for (numeric matrix).
#' @param test_labels Test dataset labels, if accuracy calculation is
#' desired (integer row).
#' @param training Training dataset (numeric matrix).
#' @param verbose Display informational messages and the full list of
#' parameters and timers at the end of execution. Default value
#' "getOption("mlpack.verbose", FALSE)" (logical).
#' @param warm_start If true and passed along with `training` and
#' `input_model` then trains more trees on top of existing model. Default
#' value "FALSE" (logical).
#'
#' @return A list with several components:
#' \item{output_model}{Model to save trained random forest to
#' (RandomForestModel).}
#' \item{predictions}{Predicted classes for each point in the test set
#' (integer row).}
#' \item{probabilities}{Predicted class probabilities for each point in the
#' test set (numeric matrix).}
#'
#' @details
#' This program is an implementation of the standard random forest
#' classification algorithm by Leo Breiman. A random forest can be trained and
#' saved for later use, or a random forest may be loaded and predictions or
#' class probabilities for points may be generated.
#'
#' The training set and associated labels are specified with the "training" and
#' "labels" parameters, respectively. The labels should be in the range `[0,
#' num_classes - 1]`. Optionally, if "labels" is not specified, the labels are
#' assumed to be the last dimension of the training dataset.
#'
#' When a model is trained, the "output_model" output parameter may be used to
#' save the trained model. A model may be loaded for predictions with the
#' "input_model"parameter. The "input_model" parameter may not be specified when
#' the "training" parameter is specified. The "minimum_leaf_size" parameter
#' specifies the minimum number of training points that must fall into each leaf
#' for it to be split. The "num_trees" controls the number of trees in the
#' random forest. The "minimum_gain_split" parameter controls the minimum
#' required gain for a decision tree node to split. Larger values will force
#' higher-confidence splits. The "maximum_depth" parameter specifies the
#' maximum depth of the tree. The "subspace_dim" parameter is used to control
#' the number of random dimensions chosen for an individual node's split. If
#' "print_training_accuracy" is specified, the calculated accuracy on the
#' training set will be printed.
#'
#' Test data may be specified with the "test" parameter, and if performance
#' measures are desired for that test set, labels for the test points may be
#' specified with the "test_labels" parameter. Predictions for each test point
#' may be saved via the "predictions"output parameter. Class probabilities for
#' each prediction may be saved with the "probabilities" output parameter.
#'
#' @author
#' mlpack developers
#'
#' @export
#' @examples
#' # For example, to train a random forest with a minimum leaf size of 20 using
#' # 10 trees on the dataset contained in "data"with labels "labels", saving the
#' # output random forest to "rf_model" and printing the training error, one
#' # could call
#'
#' \dontrun{
#' output <- random_forest(training=data, labels=labels, minimum_leaf_size=20,
#' num_trees=10, print_training_accuracy=TRUE)
#' rf_model <- output$output_model
#' }
#'
#' # Then, to use that model to classify points in "test_set" and print the test
#' # error given the labels "test_labels" using that model, while saving the
#' # predictions for each point to "predictions", one could call
#'
#' \dontrun{
#' output <- random_forest(input_model=rf_model, test=test_set,
#' test_labels=test_labels)
#' predictions <- output$predictions
#' }
random_forest <- function(input_model=NA,
labels=NA,
maximum_depth=NA,
minimum_gain_split=NA,
minimum_leaf_size=NA,
num_trees=NA,
print_training_accuracy=FALSE,
seed=NA,
subspace_dim=NA,
test=NA,
test_labels=NA,
training=NA,
verbose=getOption("mlpack.verbose", FALSE),
warm_start=FALSE) {
# Create parameters and timers objects.
p <- CreateParams("random_forest")
t <- CreateTimers()
# Initialize an empty list that will hold all input models the user gave us,
# so that we don't accidentally create two XPtrs that point to thesame model.
inputModels <- vector()
# Process each input argument before calling the binding.
if (!identical(input_model, NA)) {
SetParamRandomForestModelPtr(p, "input_model", input_model)
# Add to the list of input models we received.
inputModels <- append(inputModels, input_model)
}
if (!identical(labels, NA)) {
SetParamURow(p, "labels", to_matrix(labels))
}
if (!identical(maximum_depth, NA)) {
SetParamInt(p, "maximum_depth", maximum_depth)
}
if (!identical(minimum_gain_split, NA)) {
SetParamDouble(p, "minimum_gain_split", minimum_gain_split)
}
if (!identical(minimum_leaf_size, NA)) {
SetParamInt(p, "minimum_leaf_size", minimum_leaf_size)
}
if (!identical(num_trees, NA)) {
SetParamInt(p, "num_trees", num_trees)
}
if (!identical(print_training_accuracy, FALSE)) {
SetParamBool(p, "print_training_accuracy", print_training_accuracy)
}
if (!identical(seed, NA)) {
SetParamInt(p, "seed", seed)
}
if (!identical(subspace_dim, NA)) {
SetParamInt(p, "subspace_dim", subspace_dim)
}
if (!identical(test, NA)) {
SetParamMat(p, "test", to_matrix(test), TRUE)
}
if (!identical(test_labels, NA)) {
SetParamURow(p, "test_labels", to_matrix(test_labels))
}
if (!identical(training, NA)) {
SetParamMat(p, "training", to_matrix(training), TRUE)
}
if (!identical(verbose, FALSE)) {
SetParamBool(p, "verbose", verbose)
}
if (!identical(warm_start, FALSE)) {
SetParamBool(p, "warm_start", warm_start)
}
# Mark all output options as passed.
SetPassed(p, "output_model")
SetPassed(p, "predictions")
SetPassed(p, "probabilities")
# Call the program.
random_forest_call(p, t)
# Add ModelType as attribute to the model pointer, if needed.
output_model <- GetParamRandomForestModelPtr(p, "output_model", inputModels)
attr(output_model, "type") <- "RandomForestModel"
# Extract the results in order.
out <- list(
"output_model" = output_model,
"predictions" = GetParamURow(p, "predictions"),
"probabilities" = GetParamMat(p, "probabilities")
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.