Nothing
#' @title Regression Learner
#'
#' @include Learner.R
#'
#' @description
#' This Learner specializes [Learner] for regression problems:
#'
#' * `task_type` is set to `"regr"`.
#' * Creates [Prediction]s of class [PredictionRegr].
#' * Possible values for `predict_types` are:
#' - `"response"`: Predicts a numeric response for each observation in the test set.
#' - `"se"`: Predicts the standard error for each value of response for each observation in the test set.
#' - `"distr"`: Probability distribution as `VectorDistribution` object (requires package `distr6`, available via
#' repository \url{https://raphaels1.r-universe.dev}).
#' - `"quantiles"`: Predicts quantile estimates for each observation in the test set.
#' Set `$quantiles` to specify the quantiles to predict and `$quantile_response` to specify the response quantile.
#' See mlr3book [section](https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-quantile-regression) on quantile regression for more details.
#'
#' Predefined learners can be found in the [dictionary][mlr3misc::Dictionary] [mlr_learners].
#' Essential regression learners can be found in this dictionary after loading \CRANpkg{mlr3learners}.
#' Additional learners are implement in the Github package \url{https://github.com/mlr-org/mlr3extralearners}.
#'
#' @template param_id
#' @template param_param_set
#' @template param_predict_types
#' @template param_feature_types
#' @template param_learner_properties
#' @template param_packages
#' @template param_label
#' @template param_man
#' @template param_task_type
#'
#' @template seealso_learner
#' @export
#' @examples
#' # get all regression learners from mlr_learners:
#' lrns = mlr_learners$mget(mlr_learners$keys("^regr"))
#' names(lrns)
#'
#' # get a specific learner from mlr_learners:
#' mlr_learners$get("regr.rpart")
#' lrn("classif.featureless")
LearnerRegr = R6Class("LearnerRegr", inherit = Learner,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(id, task_type = "regr", param_set = ps(), predict_types = "response", feature_types = character(), properties = character(), packages = character(), label = NA_character_, man = NA_character_) {
super$initialize(id = id, task_type = task_type, param_set = param_set, feature_types = feature_types,
predict_types = predict_types, properties = properties, packages = packages,
label = label, man = man)
},
#' @description
#' Predicts outcomes for new data in `newdata` using the model fitted during `$train()`.
#' This method is faster than `$predict_newdata()` as it skips assertions, type conversions, encapsulation, and logging.
#'
#' Unlike `$predict_newdata()`, this method does not return a [Prediction] object.
#' Instead, it returns a list with either a `"response"` or `"prob"` element, depending on the prediction type.
#'
#' Note that `state$predict_time` and `state$log` will remain empty after using this method.
#' Some learners may not support this method and may fail when it is called.
#' Prefer `$predict_newdata()` unless performance is critical.
#'
#' If the model was trained via [resample()] or [benchmark()], you must pass the associated task object stored in the corresponding [ResampleResult] or [BenchmarkResult].
#'
#' @param newdata [`data.table::data.table()`]\cr
#' New data to predict on.
#' @param task ([Task]).
#'
#' @return `list()` with elements `"response"`, `"se"` or `"quantiles"` depending on the predict type.
predict_newdata_fast = function(newdata, task = NULL) {
if (is.null(task) && is.null(self$state$train_task)) stopf("No task stored, and no task provided")
feature_names = self$state$train_task$feature_names %??% task$feature_names
# add data and most common used meta data
fake_task = list(
# some learners require that newdata contains the features names in the same order as the training data
data = function(...) newdata[, feature_names, with = FALSE],
feature_names = feature_names,
nrow = nrow(newdata)
)
# train failed, use fallback
if (is.null(self$model) && !is.null(self$state$fallback_state$model)) {
return(self$fallback$predict_newdata_fast(newdata))
}
pred = get_private(self)$.predict(fake_task)
# predict missing predictions with fallback
miss = logical(fake_task$nrow)
if (!is.null(pred$response)) {
miss = is.na(pred$response)
}
if (!is.null(pred$se)) {
miss = miss | is.na(pred$se)
}
if (!is.null(pred$quantiles)) {
miss = miss | apply(pred$quantiles, 1L, anyMissing)
}
miss_ids = which(miss)
if (length(miss_ids) && !is.null(self$state$fallback_state$model)) {
pred_miss = self$fallback$predict_newdata_fast(newdata[miss_ids, ])
if (!is.null(pred$response)) {
pred$response[miss_ids] = pred_miss$response
}
if (!is.null(pred$se)) {
pred$se[miss_ids] = pred_miss$se
}
if (!is.null(pred$quantiles)) {
pred$quantiles[miss_ids, ] = pred_miss$quantiles
}
}
return(pred)
}
),
active = list(
#' @field quantiles (`numeric()`)\cr
#' Numeric vector of probabilities to be used while predicting quantiles.
#' Elements must be between 0 and 1, not missing and provided in ascending order.
#' If only one quantile is provided, it is used as response.
#' Otherwise, set `$quantile_response` to specify the response quantile.
quantiles = function(rhs) {
if (missing(rhs)) {
return(private$.quantiles)
}
if ("quantiles" %nin% self$predict_types) {
stopf("Learner does not support predicting quantiles")
}
private$.quantiles = assert_numeric(rhs, lower = 0, upper = 1, any.missing = FALSE, min.len = 1L, sorted = TRUE, .var.name = "quantiles")
if (length(private$.quantiles) == 1L) {
private$.quantile_response = private$.quantiles
}
},
#' @field quantile_response (`numeric(1)`)\cr
#' The quantile to be used as response.
quantile_response = function(rhs) {
if (missing(rhs)) {
return(private$.quantile_response)
}
if ("quantiles" %nin% self$predict_types) {
stopf("Learner does not support predicting quantiles")
}
private$.quantile_response = assert_number(rhs, lower = 0, upper = 1, .var.name = "response")
private$.quantiles = sort(union(private$.quantiles, private$.quantile_response))
}
),
private = list(
.quantiles = NULL,
.quantile_response = NULL
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.