Nothing
test_that("LearnerClassif predict_newdata_fast response works", {
learner = lrn("classif.debug")
task = tsk("pima")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "prob"))
expect_character(pred$response)
})
test_that("LearnerClassif predict_newdata_fast prob works", {
learner = lrn("classif.debug", predict_type = "prob")
task = tsk("pima")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "prob"))
expect_matrix(pred$prob, nrows = nrow(newdata), ncols = length(task$class_names))
})
test_that("LearnerClassif predict_newdata_fast works with missing values", {
learner = lrn("classif.debug", predict_missing = 0.5)
learner$encapsulate("evaluate", fallback = lrn("classif.featureless"))
task = tsk("pima")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "prob"))
expect_character(pred$response, any.missing = FALSE)
learner = lrn("classif.debug", predict_missing = 0.5, predict_type = "prob")
learner$encapsulate("evaluate", fallback = lrn("classif.featureless", predict_type = "prob"))
task = tsk("pima")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "prob"))
expect_matrix(pred$prob, nrows = nrow(newdata), ncols = length(task$class_names), any.missing = FALSE)
})
test_that("LearnerClassif predict_newdata_fast works with failed train", {
learner = lrn("classif.debug", predict_missing = 0.5, error_train = 1)
learner$encapsulate("evaluate", fallback = lrn("classif.featureless"))
task = tsk("pima")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "prob"))
expect_character(pred$response, any.missing = FALSE)
learner = lrn("classif.debug", predict_missing = 0.5, predict_type = "prob", error_train = 1)
learner$encapsulate("evaluate", fallback = lrn("classif.featureless", predict_type = "prob"))
task = tsk("pima")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "prob"))
expect_matrix(pred$prob, nrows = nrow(newdata), ncols = length(task$class_names), any.missing = FALSE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.