Nothing
test_that("LearnerRegr predict_newdata_fast response works", {
learner = lrn("regr.debug")
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_numeric(pred$response)
})
test_that("LearnerRegr predict_newdata_fast se works", {
learner = lrn("regr.debug", predict_type = "se")
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_numeric(pred$se)
})
test_that("LearnerRegr predict_newdata_fast quantiles works", {
learner = lrn("regr.debug", predict_type = "quantiles")
learner$quantiles = c(0.1, 0.5, 0.9)
learner$quantile_response = 0.5
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_matrix(pred$quantiles, nrows = nrow(newdata), ncols = length(learner$quantiles))
})
test_that("LearnerRegr predict_newdata_fast works with missing values", {
learner = lrn("regr.debug", predict_missing = 0.5)
learner$encapsulate("evaluate", fallback = lrn("regr.featureless"))
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_numeric(pred$response, any.missing = FALSE)
learner = lrn("regr.debug", predict_missing = 0.5, predict_type = "se")
learner$encapsulate("evaluate", fallback = lrn("regr.featureless", predict_type = "se"))
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_numeric(pred$se, any.missing = FALSE)
learner = lrn("regr.debug", predict_missing = 0.5, predict_type = "quantiles")
learner$quantiles = c(0.1, 0.5, 0.9)
learner$quantile_response = 0.5
fallback = lrn("regr.featureless", predict_type = "quantiles")
fallback$quantiles = c(0.1, 0.5, 0.9)
fallback$quantile_response = 0.5
learner$encapsulate("evaluate", fallback = fallback)
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_matrix(pred$quantiles, nrows = nrow(newdata), ncols = length(learner$quantiles), any.missing = FALSE)
})
test_that("LearnerRegr predict_newdata_fast works with failed train", {
learner = lrn("regr.debug", predict_missing = 0.5, error_train = 1)
learner$encapsulate("evaluate", fallback = lrn("regr.featureless"))
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_numeric(pred$response, any.missing = FALSE)
learner = lrn("regr.debug", predict_missing = 0.5, predict_type = "se", error_train = 1)
learner$encapsulate("evaluate", fallback = lrn("regr.featureless", predict_type = "se"))
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
expect_list(pred)
expect_names(names(pred), subset.of = c("response", "se", "quantiles"))
expect_numeric(pred$se, any.missing = FALSE)
learner = lrn("regr.debug", predict_missing = 0.5, predict_type = "quantiles", error_train = 1)
learner$quantiles = c(0.1, 0.5, 0.9)
learner$quantile_response = 0.5
fallback = lrn("regr.featureless", predict_type = "quantiles")
fallback$quantiles = c(0.1, 0.5, 0.9)
fallback$quantile_response = 0.5
learner$encapsulate("evaluate", fallback = fallback)
task = tsk("mtcars")
newdata = task$data()
learner$train(task)
pred = learner$predict_newdata_fast(newdata)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.