| ktau | R Documentation | 
Measure to compare true observed response with predicted response in regression tasks.
ktau(truth, response, ...)
| truth | ( | 
| response | ( | 
| ... | ( | 
Kendall's tau is defined as Kendall's rank correlation coefficient between truth and response. It is defined as
  \tau = \frac{(\mathrm{number of concordant pairs)} - (\mathrm{number of discordant pairs)}}{\mathrm{(number of pairs)}}
  
Calls stats::cor() with method set to "kendall".
Performance value as numeric(1).
 Type: "regr"
 Range: [-1, 1]
 Minimize: FALSE
 Required prediction: response
Rosset S, Perlich C, Zadrozny B (2006). “Ranking-based evaluation of regression models.” Knowledge and Information Systems, 12(3), 331–353. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10115-006-0037-3")}.
Other Regression Measures: 
ae(),
ape(),
bias(),
linex(),
mae(),
mape(),
maxae(),
maxse(),
medae(),
medse(),
mse(),
msle(),
pbias(),
pinball(),
rae(),
rmse(),
rmsle(),
rrse(),
rse(),
rsq(),
sae(),
se(),
sle(),
smape(),
srho(),
sse()
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
ktau(truth, response)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.