| mape | R Documentation |
Measure to compare true observed response with predicted response in regression tasks.
mape(truth, response, sample_weights = NULL, na_value = NaN, ...)
truth |
( |
response |
( |
sample_weights |
( |
na_value |
( |
... |
( |
The Mean Absolute Percent Error is defined as
\frac{1}{n} \sum_{i=1}^n w_i \left| \frac{ t_i - r_i}{t_i} \right|,
where w_i are normalized sample weights.
This measure is undefined if any element of t is 0.
Performance value as numeric(1).
Type: "regr"
Range: [0, \infty)
Minimize: TRUE
Required prediction: response
de Myttenaere, Arnaud, Golden, Boris, Le Grand, Bénédicte, Rossi, Fabrice (2016). “Mean Absolute Percentage Error for regression models.” Neurocomputing, 192, 38-48. ISSN 0925-2312, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.neucom.2015.12.114")}.
Other Regression Measures:
ae(),
ape(),
bias(),
ktau(),
linex(),
mae(),
maxae(),
maxse(),
medae(),
medse(),
mse(),
msle(),
pbias(),
pinball(),
rae(),
rmse(),
rmsle(),
rrse(),
rse(),
rsq(),
sae(),
se(),
sle(),
smape(),
srho(),
sse()
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
mape(truth, response)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.