| rse | R Documentation |
Measure to compare true observed response with predicted response in regression tasks.
rse(truth, response, na_value = NaN, ...)
truth |
( |
response |
( |
na_value |
( |
... |
( |
The Relative Squared Error is defined as
\frac{\sum_{i=1}^n \left( t_i - r_i \right)^2}{\sum_{i=1}^n \left( t_i - \bar{t} \right)^2},
where \bar{t} = \sum_{i=1}^n t_i.
Can be interpreted as squared error of the predictions relative to a naive model predicting the mean.
This measure is undefined for constant t.
Performance value as numeric(1).
Type: "regr"
Range: [0, \infty)
Minimize: TRUE
Required prediction: response
Other Regression Measures:
ae(),
ape(),
bias(),
ktau(),
linex(),
mae(),
mape(),
maxae(),
maxse(),
medae(),
medse(),
mse(),
msle(),
pbias(),
pinball(),
rae(),
rmse(),
rmsle(),
rrse(),
rsq(),
sae(),
se(),
sle(),
smape(),
srho(),
sse()
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
rse(truth, response)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.