mlr_pipeops_histbin | R Documentation |
Splits numeric features into equally spaced bins.
See graphics::hist()
for details.
Values that fall out of the training data range during prediction are
binned with the lowest / highest bin respectively.
R6Class
object inheriting from PipeOpTaskPreprocSimple
/PipeOpTaskPreproc
/PipeOp
.
PipeOpHistBin$new(id = "histbin", param_vals = list())
id
:: character(1)
Identifier of resulting object, default "histbin"
.
param_vals
:: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list()
.
Input and output channels are inherited from PipeOpTaskPreproc
.
The output is the input Task
with all affected numeric features replaced by their binned versions.
The $state
is a named list
with the $state
elements inherited from PipeOpTaskPreproc
, as well as:
breaks
:: list
List of intervals representing the bins for each numeric feature.
The parameters are the parameters inherited from PipeOpTaskPreproc
, as well as:
breaks
:: character(1)
| numeric
| function
Either a character(1)
string naming an algorithm to compute the number of cells,
a numeric(1)
giving the number of breaks for the histogram,
a vector numeric
giving the breakpoints between the histogram cells, or
a function
to compute the vector of breakpoints or to compute the number
of cells. Default is algorithm "Sturges"
(see grDevices::nclass.Sturges()
).
For details see hist()
.
Uses the graphics::hist
function.
Only methods inherited from PipeOpTaskPreprocSimple
/PipeOpTaskPreproc
/PipeOp
.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreprocSimple
,
PipeOpTaskPreproc
,
PipeOp
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_encode
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_scale
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
,
mlr_pipeops
library("mlr3")
task = tsk("iris")
pop = po("histbin")
task$data()
pop$train(list(task))[[1]]$data()
pop$state
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.