mlr_pipeops_imputeconstant | R Documentation |
Impute features by a constant value.
R6Class
object inheriting from PipeOpImpute
/PipeOp
.
PipeOpImputeConstant$new(id = "imputeconstant", param_vals = list())
id
:: character(1)
Identifier of resulting object, default "imputeconstant"
.
param_vals
:: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default list()
.
Input and output channels are inherited from PipeOpImpute
.
The output is the input Task
with all affected features missing values imputed by
the value of the constant
parameter.
The $state
is a named list
with the $state
elements inherited from PipeOpImpute
.
The $state$model
contains the value of the constant
parameter that is used for imputation.
The parameters are the parameters inherited from PipeOpImpute
, as well as:
constant
:: atomic(1)
The constant value that should be used for the imputation, atomic vector of length 1
. The atomic mode must match
the type of the features that will be selected by the affect_columns
parameter and this will be checked during
imputation. This is a required hyperparameter and needs to be set by the user.
check_levels
:: logical(1)
Should be checked whether the constant
value is a valid level of factorial features (i.e., it already is a
level)? Raises an error if unsuccessful. This check is only performed for factorial features (i.e., factor
,
ordered
; skipped for character
). Initialized to TRUE
.
Note that empty factor levels can be a problem for many Learners
. Thus, PipeOpImputeOOR
is
the preferred choice for creating new levels, since it is designed to impute out-of-range values and offers a more
explicit control for handling potentially problematic behavior.
The constructor is called with empty_level_control
set to "always"
, to allow the creation of a new empty level
for factor
and ordered
(but not character
) features during training, if constant
is not an already existing
level and check_levels
is set to FALSE
. This has no impact if check_levels
is TRUE
, since in that case an
error would be raised before imputation.
Only fields inherited from PipeOp
.
Only methods inherited from PipeOpImpute
/PipeOp
.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEncodePL
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_adas
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_decode
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_encodeplquantiles
,
mlr_pipeops_encodepltree
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_learner_pi_cvplus
,
mlr_pipeops_learner_quantiles
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nearmiss
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tomek
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Other Imputation PipeOps:
PipeOpImpute
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
library("mlr3")
task = tsk("pima")
task$missings()
# impute missing values of the numeric feature "glucose" by the constant value -999
po = po("imputeconstant", param_vals = list(
constant = -999, affect_columns = selector_name("glucose"))
)
new_task = po$train(list(task = task))[[1]]
new_task$missings()
new_task$data(cols = "glucose")[[1]]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.