mlr_pipeops_imputelearner | R Documentation |
Impute features by fitting a Learner
for each feature.
Uses the features indicated by the context_columns
parameter as features to train the imputation Learner
.
Note this parameter is part of the PipeOpImpute
base class and explained there.
Additionally, only features supported by the learner can be imputed; i.e. learners of type
regr
can only impute features of type integer
and numeric
, while classif
can impute
features of type factor
, ordered
and logical
.
The Learner
used for imputation is trained on all context_columns
; if these contain missing values,
the Learner
typically either needs to be able to handle missing values itself, or needs to do its
own imputation (see examples).
R6Class
object inheriting from PipeOpImpute
/PipeOp
.
PipeOpImputeLearner$new(learner, id = NULL, param_vals = list())
id
:: character(1)
Identifier of resulting object, default "impute."
, followed by the id
of the Learner
.
learner
:: Learner
| character(1)
Learner
to wrap, or a string identifying a Learner
in the mlr3::mlr_learners
Dictionary
.
The Learner
usually needs to be able to handle missing values, i.e. have the missings
property, unless care is taken
that context_columns
do not contain missings; see examples.
This argument is always cloned; to access the Learner
inside PipeOpImputeLearner
by-reference, use $learner
.
param_vals
:: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list()
.
Input and output channels are inherited from PipeOpImpute
.
The output is the input Task
with missing values from all affected features imputed by the trained model.
The $state
is a named list
with the $state
elements inherited from PipeOpImpute
.
The $state$models
is a named list
of models
created by the Learner
's $.train()
function
for each column. If a column consists of missing values only during training, the model
is 0
or the levels of the
feature; these are used for sampling during prediction.
This state is given the class "pipeop_impute_learner_state"
.
The parameters are the parameters inherited from PipeOpImpute
, in addition to the parameters of the Learner
used for imputation.
Uses the $train
and $predict
functions of the provided learner. Features that are entirely NA
are imputed as 0
or randomly sampled from available (factor
/ logical
) levels.
The Learner
does not necessarily need to handle missing values in cases
where context_columns
is chosen well (or there is only one column with missing values present).
Fields inherited from PipeOpTaskPreproc
/PipeOp
, as well as:
learner
:: Learner
Learner
that is being wrapped. Read-only.
learner_models
:: list
of Learner
| NULL
Learner
that is being wrapped. This list is named by features for which a Learner
was fitted, and
contains the same Learner
, but with different respective models for each feature. If this PipeOp
is not trained,
this is an empty list
. For features that were entirely NA
during training, the list
contains NULL
elements.
Only methods inherited from PipeOpImpute
/PipeOp
.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_adas
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Other Imputation PipeOps:
PipeOpImpute
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
library("mlr3")
task = tsk("pima")
task$missings()
po = po("imputelearner", lrn("regr.rpart"))
new_task = po$train(list(task = task))[[1]]
new_task$missings()
# '$state' of the "regr.rpart" Learner, trained to predict the 'mass' column:
po$state$model$mass
library("mlr3learners")
# to use the "regr.kknn" Learner, prefix it with its own imputation method!
# The "imputehist" PipeOp is used to train "regr.kknn"; predictions of this
# trained Learner are then used to impute the missing values in the Task.
po = po("imputelearner",
po("imputehist") %>>% lrn("regr.kknn")
)
new_task = po$train(list(task = task))[[1]]
new_task$missings()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.