mlr_pipeops_ovrsplit | R Documentation |
Splits a classification Task into several binary classification Tasks to perform "One vs. Rest" classification. This works in combination
with PipeOpOVRUnite
.
For each target level a new binary classification Task is constructed with
the respective target level being the positive class and all other target levels being the
new negative class "rest"
.
This PipeOp
creates a Multiplicity
, which means that subsequent PipeOp
s are executed
multiple times, once for each created binary Task, until a PipeOpOVRUnite
is reached.
Note that Multiplicity
is currently an experimental features and the implementation or UI
may change.
R6Class
inheriting from PipeOp
.
PipeOpOVRSplit$new(id = "ovrsplit", param_vals = list())
id
:: character(1)
Identifier of the resulting object, default "ovrsplit"
.
param_vals
:: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list()
.
PipeOpOVRSplit
has one input channel named "input"
taking a TaskClassif
both during training and prediction.
PipeOpOVRSplit
has one output channel named "output"
returning a Multiplicity
of
TaskClassif
s both during training and prediction, i.e., the newly
constructed binary classification Tasks.
The $state
contains the original target levels of the TaskClassif
supplied
during training.
PipeOpOVRSplit
has no parameters.
The original target levels stored in the $state
are also used during prediction when creating the new
binary classification Tasks.
The names of the element of the output Multiplicity
are given by the levels of the target.
If a target level "rest"
is present in the input TaskClassif
, the
negative class will be labeled as "rest." (using as many
"."' postfixes needed to yield a
valid label).
Should be used in combination with PipeOpOVRUnite
.
Only fields inherited from PipeOp
.
Only methods inherited from PipeOp
.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_adas
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Other Multiplicity PipeOps:
Multiplicity()
,
PipeOpEnsemble
,
mlr_pipeops_classifavg
,
mlr_pipeops_featureunion
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_ovrunite
,
mlr_pipeops_regravg
,
mlr_pipeops_replicate
Other Experimental Features:
Multiplicity()
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_ovrunite
,
mlr_pipeops_replicate
library(mlr3)
task = tsk("iris")
po = po("ovrsplit")
po$train(list(task))
po$predict(list(task))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.