| mlr_pipeops_randomresponse | R Documentation |
Takes in a Prediction of predict_type "prob"
(for PredictionClassif) or "se"
(for PredictionRegr) and generates a randomized "response"
prediction.
For "prob", the responses are sampled according to
the probabilities of the input PredictionClassif. For "se",
responses are randomly drawn according to the rdistfun parameter (default is rnorm) by using
the original responses of the input PredictionRegr as the mean and the
original standard errors of the input PredictionRegr as the standard
deviation (sampling is done observation-wise).
R6Class object inheriting from PipeOp.
PipeOpRandomResponse$new(id = "randomresponse", param_vals = list(), packages = character(0))
id :: character(1)
Identifier of the resulting object, default "randomresponse".
param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default list().
packages :: character
Set of all required packages for the private$.predict() methods related to the rdistfun
parameter. Default is character(0).
PipeOpRandomResponse has one input channel named "input", taking NULL during training and
a Prediction during prediction.
PipeOpRandomResponse has one output channel named "output", producing NULL during
training and a Prediction with random responses during prediction.
The $state is left empty (list()).
rdistfun :: function
A function for generating random responses when the predict type is "se". This function must
accept the arguments n (integerish number of responses), mean (numeric for the mean),
and sd (numeric for the standard deviation), and must vectorize over mean
and sd. Default is rnorm.
If the predict_type of the input Prediction does not match "prob" or
"se", the input Prediction will be returned unaltered.
Only fields inherited from PipeOp.
Only methods inherited from PipeOp.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp,
PipeOpEncodePL,
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreproc,
PipeOpTaskPreprocSimple,
mlr_pipeops,
mlr_pipeops_adas,
mlr_pipeops_blsmote,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_decode,
mlr_pipeops_encode,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_encodeplquantiles,
mlr_pipeops_encodepltree,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_info,
mlr_pipeops_isomap,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_learner_pi_cvplus,
mlr_pipeops_learner_quantiles,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nearmiss,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_rowapply,
mlr_pipeops_scale,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_smotenc,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tomek,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson
library(mlr3)
library(mlr3learners)
task1 = tsk("iris")
g1 = LearnerClassifRpart$new() %>>% PipeOpRandomResponse$new()
g1$train(task1)
g1$pipeops$classif.rpart$learner$predict_type = "prob"
set.seed(2409)
g1$predict(task1)
task2 = tsk("mtcars")
g2 = LearnerRegrLM$new() %>>% PipeOpRandomResponse$new()
g2$train(task2)
g2$pipeops$regr.lm$learner$predict_type = "se"
set.seed(2906)
g2$predict(task2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.