| mlr_pipeops_select | R Documentation |
Removes features from Task depending on a Selector function:
The selector parameter gives the features to keep.
See Selector for selectors that are provided and how to write custom Selectors.
R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.
PipeOpSelect$new(id = "select", param_vals = list())
id :: character(1)
Identifier of resulting object, default "select".
param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list().
Input and output channels are inherited from PipeOpTaskPreproc.
The output is the input Task with features removed that were not selected by the Selector/function in selector.
The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as well as:
selection :: character
A vector of all feature names that are kept (i.e. not dropped) in the Task. Initialized to selector_all()
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:
selector :: function | Selector
Selector function, takes a Task as argument and returns a character
of features to keep.
See Selector for example functions. Defaults to selector_all().
Uses task$select().
Only fields inherited from PipeOp.
Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp,
PipeOpEncodePL,
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreproc,
PipeOpTaskPreprocSimple,
mlr_pipeops,
mlr_pipeops_adas,
mlr_pipeops_blsmote,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_decode,
mlr_pipeops_encode,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_encodeplquantiles,
mlr_pipeops_encodepltree,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_info,
mlr_pipeops_isomap,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_learner_pi_cvplus,
mlr_pipeops_learner_quantiles,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nearmiss,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_rowapply,
mlr_pipeops_scale,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_smote,
mlr_pipeops_smotenc,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tomek,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson
Other Selectors:
Selector
library("mlr3")
task = tsk("boston_housing")
pos = po("select")
pos$param_set$values$selector = selector_all()
pos$train(list(task))[[1]]$feature_names
pos$param_set$values$selector = selector_type("factor")
pos$train(list(task))[[1]]$feature_names
pos$param_set$values$selector = selector_invert(selector_type("factor"))
pos$train(list(task))[[1]]$feature_names
pos$param_set$values$selector = selector_grep("^r")
pos$train(list(task))[[1]]$feature_names
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.