| mlr_pipeops_targettrafoscalerange | R Documentation |
Linearly transforms a numeric target of a TaskRegr so it is between lower
and upper. The formula for this is x' = offset + x * scale,
where scale is (upper - lower) / (max(x) - min(x)) and
offset is -min(x) * scale + lower. The same transformation is applied during training and
prediction.
R6Class object inheriting from PipeOpTargetTrafo/PipeOp
PipeOpTargetTrafoScaleRange$new(id = "targettrafoscalerange", param_vals = list())
id :: character(1)
Identifier of resulting object, default "targettrafoscalerange".
param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default list().
Input and output channels are inherited from PipeOpTargetTrafo.
The $state is a named list containing the slots $offset and $scale.
The parameters are the parameters inherited from PipeOpTargetTrafo, as well as:
lower :: numeric(1)
Target value of smallest item of input target. Initialized to 0.
upper :: numeric(1)
Target value of greatest item of input target. Initialized to 1.
Overloads PipeOpTargetTrafo's .get_state(), .transform(), and
.invert(). Should be used in combination with PipeOpTargetInvert.
Only fields inherited from PipeOp.
Only methods inherited from PipeOpTargetTrafo/PipeOp.
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp,
PipeOpEncodePL,
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreproc,
PipeOpTaskPreprocSimple,
mlr_pipeops,
mlr_pipeops_adas,
mlr_pipeops_blsmote,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_decode,
mlr_pipeops_encode,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_encodeplquantiles,
mlr_pipeops_encodepltree,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemedian,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_learner_pi_cvplus,
mlr_pipeops_learner_quantiles,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nearmiss,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_rowapply,
mlr_pipeops_scale,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_smotenc,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tomek,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson
library(mlr3)
task = tsk("boston_housing")
po = PipeOpTargetTrafoScaleRange$new()
po$train(list(task))
po$predict(list(task))
#syntactic sugar for a graph using ppl():
ttscalerange = ppl("targettrafo", trafo_pipeop = PipeOpTargetTrafoScaleRange$new(),
graph = PipeOpLearner$new(LearnerRegrRpart$new()))
ttscalerange$train(task)
ttscalerange$predict(task)
ttscalerange$state$regr.rpart
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.