Nothing
# ---- Credit Example ----
# ---- setup ----
library("mlr3summary")
library("mlr3learners")
library("mlr3pipelines")
library("mlr3fairness")
data("credit", package = "mlr3summary")
# ---- glm ----
logreg = glm(risk ~., data = credit, family = binomial(link = "logit"))
summary(logreg)
# ---- create task ----
task = TaskClassif$new(id = "credit", backend = credit, target = "risk", positive = "good")
# ---- summary ranger ----
rf = lrn("classif.ranger", predict_type = "prob")
set.seed(12005L)
rf$train(task)
cv3 = rsmp("cv", folds = 3L)
rr = resample(task = task, learner = rf, resampling = cv3, store_models = TRUE)
rr$aggregate(msrs(list("classif.acc", "classif.auc")))
summary(object = rf, resample_result = rr)
# ---- fairness assessment ----
summary(object = rf, resample_result = rr,
control = summary_control(protected_attribute = "sex"))
# ---- adapt control ----
summary(object = rf, resample_result = rr,
control = summary_control(measures = msrs(list("classif.acc"))))
summary(object = rf, resample_result = rr,
control = summary_control(importance_measures = c("pfi.f1")))
# ---- omit certain parts ----
summary(object = rf, resample_result = rr,
control = summary_control(measures = msrs(list("classif.acc"))),
hide = c("performance", "residuals", "complexity"))
# ---- parallelization ----
library("future")
plan("multisession")
summary(object = rf, resample_result = rr)
# ---- getting help ---
?summary.Learner
?summary_control
# ---- pipelines ----
library(mlr3pipelines)
graphlrn = as_learner(
po("scale") %>>%
po("encode") %>>%
lrn("classif.ranger", predict_type = "prob"))
graphlrn$train(task)
summary(graphlrn)
set.seed(1234L)
graph_complex = as_learner(
po("scale", center = TRUE, scale = FALSE) %>>%
gunion(list(
po("missind"),
po("imputemedian")
)) %>>%
po("featureunion") %>>%
po("learner", mlr3::lrn("classif.rpart"))
)
graph_complex = as_learner(graph_complex)
graph_complex$train(task)
summary(graph_complex)
# ----- AutoTuner ---
library(mlr3tuning)
tnr_grid_search = tnr("grid_search", resolution = 5, batch_size = 5)
lrn_svm = po("encode") %>>% lrn("classif.svm",
cost = to_tune(1e-5, 1e5, logscale = TRUE),
gamma = to_tune(1e-5, 1e5, logscale = TRUE),
kernel = "radial",
type = "C-classification",
predict_type = "prob"
)
cv3 = rsmp("cv", folds = 3)
msr_ce = msr("classif.ce")
at = auto_tuner(tuner = tnr_grid_search, learner = lrn_svm,
resampling = cv3, measure = msr_ce)
at$train(task)
summary(at)
rr_at = resample(task = task, learner = at, resampling = cv3, store_models = TRUE)
summary(at, rr_at)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.