Nothing
nn_debug = nn_module(
initialize = function(d_in1, d_in2, d_out1, d_out2, bias = TRUE) {
self$linear1 = nn_linear(d_in1, d_out1, bias)
self$linear2 = nn_linear(d_in2, d_out2, bias)
},
forward = function(input1, input2) {
output1 = self$linear1(input1)
output2 = self$linear2(input2)
list(output1 = output1, output2 = output2)
}
)
PipeOpTorchDebug = R6Class("PipeOpTorchDebug",
inherit = PipeOpTorch,
public = list(
initialize = function(id = "nn_debug", param_vals = list(), inname = c("input1", "input2"),
outname = c("output1", "output2")) {
param_set = ps(
d_out1 = p_int(lower = 1, tags = c("required", "train")),
d_out2 = p_int(lower = 1, tags = c("required", "train")),
bias = p_lgl(default = TRUE, tags = "train")
)
super$initialize(
id = id,
param_vals = param_vals,
param_set = param_set,
inname = inname,
outname = outname,
module_generator = nn_debug
)
}
),
private = list(
.shape_dependent_params = function(shapes_in, param_vals, task) {
c(param_vals, list(d_in1 = tail(shapes_in[["input1"]], 1)), d_in2 = tail(shapes_in[["input2"]], 1))
},
.shapes_out = function(shapes_in, param_vals, task) {
list(
input1 = c(head(shapes_in[[1]], -1), param_vals$d_out1),
input2 = c(head(shapes_in[[2]], -1), param_vals$d_out2)
)
}
)
)
PipeOpPreprocTorchAddSome = pipeop_preproc_torch("trafo_some",
param_set = ps(some = p_dbl(default = 1L, tags = "train")),
fn = crate(function(x, some = 1L) x + some),
shapes_out = "infer"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.