Nothing
test_that("PipeOpTorchIngressNumeric", {
po_ingress = po("torch_ingress_num")
dat = data.table(y = runif(10), x_cat = factor(letters[1:10]), x_lgl = TRUE, x_ord = ordered(letters[1:10]),
x_num = runif(10), x_int = 1:10
)
task = as_task_regr(dat, target = "y")
expect_po_ingress(po_ingress, task)
})
test_that("ingress fails with 0 features", {
expect_error(
po("torch_ingress_cat")$train(list(tsk("iris")))
)
})
test_that("PipeOpTorchIngressCategorical", {
po_ingress = po("torch_ingress_categ")
dat = data.table(y = runif(10), x_cat = factor(letters[1:10]), x_lgl = TRUE, x_ord = ordered(letters[1:10]),
x_num = runif(10), x_int = 1:10
)
task = as_task_regr(dat, target = "y")
expect_po_ingress(po_ingress, task)
})
test_that("PipeOpTorchIngressImage", {
po_ingress = po("torch_ingress_ltnsr")
task = nano_imagenet()$cbind(data.frame(x1 = 1:10))
expect_po_ingress(po_ingress, task)
})
test_that("PipeOpTorchIngressLazyTensor", {
task = nano_mnist()
po_ingress = po("torch_ingress_ltnsr")
output = po_ingress$train(list(task))[[1L]]
ds = task_dataset(task, output$ingress, target_batchgetter = target_batchgetter_classif)
batch = ds$.getbatch(1:2)
expect_permutation(names(batch), c("x", "y", ".index"))
expect_equal(names(batch$x), "torch_ingress_ltnsr.input")
expect_class(batch$x[[1L]], "torch_tensor")
expect_true(batch$x$torch_ingress_ltnsr.input$dtype == torch_float())
expect_equal(batch$x$torch_ingress_ltnsr.input$shape, c(2, 1, 28, 28))
task_old = task$clone()
task$cbind(data.frame(row_id = 1:10, x_num = 1:10))
expect_po_ingress(po_ingress, task)
expect_error(po_ingress$param_set$set_values(shape = c(22, 4)))
expect_error(po_ingress$param_set$set_values(shape = c(NA, 22, 4)), regexp = NA)
})
test_that("target can contain missings for ingress", {
task = as_task_regr(data.table(y = c(1, NA), x = 1:1), target = "y")
md = po("torch_ingress_num")$train(list(task))[[1L]]
expect_class(md, "ModelDescriptor")
})
test_that("shape of lazy tensor ingress can be inferred", {
po_ingress = po("torch_ingress_ltnsr", shape = "infer")
out = po_ingress$train(list(nano_dogs_vs_cats()))[[1L]]
expect_equal(out$pointer_shape, c(NA, 3, 280, 300))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.