Nothing
test_that("trafo_resize", {
expect_pipeop_torch_preprocess(
obj = po("trafo_resize", size = c(3, 4)),
shapes_in = list(c(16, 10, 10, 4), c(3, 4, 8)),
deterministic = TRUE
)
})
test_that("trafo_resize", {
expect_pipeop_torch_preprocess(
obj = po("trafo_resize", size = c(3, 4)),
shapes_in = list(c(16, 10, 10, 4), c(3, 4, 8)),
deterministic = TRUE
)
})
test_that("trafo_nop", {
expect_pipeop_torch_preprocess(
obj = po("trafo_nop"),
shapes_in = list(c(5, 1)),
deterministic = TRUE
)
})
test_that("trafo_adjust_gamma", {
expect_pipeop_torch_preprocess(
obj = po("trafo_adjust_gamma", gamma = 0.2, gain = 2),
shapes_in = list(c(4, 3, 10, 10)),
deterministic = TRUE
)
})
test_that("trafo_adjust_brightness", {
expect_pipeop_torch_preprocess(
obj = po("trafo_adjust_brightness", brightness_factor = 0.2),
shapes_in = list(c(3, 3, 8, 8)),
deterministic = TRUE
)
})
test_that("trafo_adjust_hue", {
expect_pipeop_torch_preprocess(
obj = po("trafo_adjust_hue", hue_factor = 0.3),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
test_that("trafo_adjust_saturation", {
expect_pipeop_torch_preprocess(
obj = po("trafo_adjust_saturation", saturation_factor = 2),
shapes_in = list(c(2, 3, 8, 8)),
deterministic = TRUE
)
})
# not implemented
#test_that("trafo_grayscale", {
# expect_pipeop_torch_preprocess(
# obj = po("trafo_grayscale", num_output_channels = 3),
# shapes_in = list(c(2, 3, 8, 8))
# )
#})
test_that("trafo_rgb_to_grayscale", {
expect_pipeop_torch_preprocess(
obj = po("trafo_rgb_to_grayscale"),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
test_that("trafo_normalize", {
expect_pipeop_torch_preprocess(
obj = po("trafo_normalize", mean = -2, std = 3),
shapes_in = list(c(4, 3, 8, 8)),
deterministic = TRUE
)
})
test_that("trafo_pad", {
expect_pipeop_torch_preprocess(
obj = po("trafo_pad", padding = c(2, 3)),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
## Augmentation
test_that("augment_resized_crop", {
expect_pipeop_torch_preprocess(
obj = po("augment_resized_crop", top = 1, left = 2, height = 5, width = 6, size = c(10, 11)),
shapes_in = list(c(5, 3, 64, 64)),
deterministic = TRUE
)
})
test_that("augment_color_jitter", {
expect_pipeop_torch_preprocess(
obj = po("augment_color_jitter"),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
test_that("augment_random_resized_crop", {
expect_pipeop_torch_preprocess(
obj = po("augment_random_resized_crop", size = c(4, 5)),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
})
test_that("augment_random_order", {
expect_pipeop_torch_preprocess(
obj = po("augment_random_order", transforms = list(
function(x) torchvision::transform_resize(x, c(4, 5)),
function(x) torchvision::transform_resize(x, c(4, 5)) + 1
)),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
expect_pipeop_torch_preprocess(
obj = po("augment_random_order", transforms = list(
function(x) x
)),
shapes_in = list(c(5, 2)),
deterministic = FALSE
)
})
test_that("augment_hflip", {
expect_pipeop_torch_preprocess(
obj = po("augment_hflip"),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
#test_that("augment_random_rotation", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_random_rotation", degrees = 20),
# shapes_in = list(c(1, 3, 8, 8))
# )
#})
test_that("augment_random_horizontal_flip", {
expect_pipeop_torch_preprocess(
obj = po("augment_random_horizontal_flip"),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
})
#test_that("augment_linear_transformation", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_linear_transformation",
# transformation_matrix = torch_randn(rep(3 * 8 * 7, 2)), mean_vector = torch_randn(3 * 8 * 7)),
# shapes_in = list(c(1, 3, 8, 7))
# )
#})
test_that("augment_crop", {
expect_pipeop_torch_preprocess(
obj = po("augment_crop", top = 2, left = 3, height = 10, width = 9),
shapes_in = list(c(5, 3, 11, 9)),
deterministic = TRUE
)
})
test_that("augment_random_vertical_flip", {
expect_pipeop_torch_preprocess(
obj = po("augment_random_vertical_flip"),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
})
# not implemented for torch_tensor
#test_that("augment_random_grayscale", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_random_vertical_flip"),
# shapes_in = list(c(1, 3, 8, 8))
# )
#})
#test_that("augment_random_perspective", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_random_perspective"),
# shapes_in = list(c(1, 3, 8, 8))
# )
#})
test_that("augment_random_affine", {
expect_pipeop_torch_preprocess(
obj = po("augment_random_affine", degrees = c(2, 70)),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
})
test_that("augment_vflip", {
expect_pipeop_torch_preprocess(
obj = po("augment_vflip"),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
#test_that("augment_random_erasing", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_random_erasing"),
# shapes_in = list(c(1, 3, 8, 8))
# )
#})
# not implemented
#test_that("augment_perspective", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_perspective", startpoints = 3, endpoints = 4),
# shapes_in = list(c(1, 3, 8, 8))
# )
#})
# FIXME: here the rowwise parameter is problematic
#test_that("augment_random_apply", {
# expect_pipeop_torch_preprocess(
# obj = po("augment_random_apply", transforms = list(
# function(x) torchvision::transform_resize(x, c(4, 5)),
# function(x) torchvision::transform_resize(x, c(4, 5)) + 1
# )),
# shapes_in = list(c(5, 3, 9, 18)),
# deterministic = FALSE
# )
#})
test_that("augment_rotate", {
expect_pipeop_torch_preprocess(
obj = po("augment_rotate", angle = 3),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = TRUE
)
})
test_that("augment_center_crop", {
expect_pipeop_torch_preprocess(
obj = po("augment_center_crop", size = c(6, 5)),
shapes_in = list(c(6, 3, 10, 11)),
deterministic = FALSE
)
})
test_that("augment_random_choice", {
# needs dev version of torchvision
expect_pipeop_torch_preprocess(
obj = po("augment_random_choice", transforms = list(
identity, function(x) x + 1
)),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
})
test_that("augment_random_crop", {
expect_pipeop_torch_preprocess(
obj = po("augment_random_crop", size = c(4, 4)),
shapes_in = list(c(5, 3, 8, 8)),
deterministic = FALSE
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.