Nothing
#eventuell benoetigte Funktionen
ENorm<-function(x){
sqrt( sum( x^2))
}
#' Empirical scaled residuals
#'
#' A function that computes the scaled residuals of the data.
#'
#' @param data a n x d matrix of d dimensional data vectors..
#'
#' @return A n x d matrix of the scaled residuals.
#'
#' @export
standard<-function(data) # Standardisierung
{
n=dim(data)[1]
d=dim(data)[2]
Sn=((n-1)/n)*stats::cov(data)
Snew = pracma::sqrtm(Sn)$Binv
meanX=colMeans(data)
Y=matrix(rep(0,d*n),ncol=d,nrow=n)
for (i in 1:n)
{
Y[i,]= Snew%*%(data[i,]-meanX)
}
return(Y)
}
empchar=function(x,data,r){
normx=ENorm(x) #Norm von x
if(normx>r){ret=normx-r} #Ab?ndern der Funktion ausserhalb von r auf positive Werte
else {n=dim(data)[1]
y=t(t(x)%*%t(data)) #Vektor der Skalarprodukte
ret=-abs((sum(exp(1i*y))/n-exp(-(normx^2)/2))/normx) # - Abstand (empirischen - theoretische char. Fnk. ), 1/normx Gewichtsfunktion
}
return(ret)
}
GVP<-function(Anzahl,d) # Berechnung der Gleichverteilungsdiskretisierung
{
mu=rep(0,d)
E=diag(1,d,d)
X2= MASS::mvrnorm(Anzahl,mu,E)
GVPAO=matrix(rep(0,Anzahl*d),nrow=Anzahl,ncol=d)
for (j in 1:Anzahl)
{
GVPAO[j,]=X2[j,]/(ENorm(X2[j,]))
}
return(GVPAO)
}
H1<-function(data,vector)
{
n=dim(data)[1]
d=dim(data)[2]
summe1=rep(0,d)
summe2=0
summe3=0
for (j in 1:n)
{
sp=sum(vector*data[j,])
summe1=summe1+data[j,]*sp^2
summe2=summe2+sp^3
summe3=summe3+sp^4
}
summe1=1/n*summe1
summe2=1/n*summe2
summe3=1/n*summe3
return(c((ENorm(summe1))^2,summe2^2,summe3))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.