Description Details Methods Super class Methods Super class Methods Super class Methods Author(s)
Root R6 class representing a generic optmiser
Root R6 class representing a generic optmiser
R6 class representing a SGD optmiser
R6 class representing a SGD optmiser
R6 class representing a SGDWM optmiser
R6 class representing a SGDWM optmiser
R6 class representing an Adam optmiser
R6 class representing an Adam optmiser
Object of this class are created by the '.modello'
session object that linkes them with the corresponding
optimiser
in the FORTRAN environment.
new()
Initialise the reference object of class 'opt'
.opt$new(name)
name
number
name
finalize()
Awares of a reference object associated
to an existing number
is removed
.opt$finalize()
name()
Returns the name of the optimiser
.
.opt$name()
Returns the name of the optmiser
id()
Returns the id of the optmiser
(i.e. its position index in the OPTS_
array).
.opt$id()
Returns the id of the optmiser
pop()
Pop (removes) the optmiser
from the
OPTS_
array.
.opt$pop()
Returns invisible self
is.linked()
Checks that the reference object is linked to
a optmiser
.opt$is.linked()
Retursn TRUE if is linked, FALSE otherwise
print()
Prints a representation of the optmiser
.opt$print()
clone()
The objects of this class are cloneable with this method.
.opt$clone(deep = FALSE)
deep
Whether to make a deep clone.
modello::.opt
-> sgd.opt
step()
Performs niter
SGD steps
.sgd.opt$step(g, j, lr, niter)
g
reference object of class 'graph' containing the computational graph of the objective function
j
refernence object of class 'number' represeting the output of the objective function
lr
learning rate
niter
number of steps
clone()
The objects of this class are cloneable with this method.
.sgd.opt$clone(deep = FALSE)
deep
Whether to make a deep clone.
modello::.opt
-> sgdwm.opt
step()
Performs niter
SGDWM steps
.sgdwm.opt$step(g, j, lr, alpha, niter)
g
reference object of class 'graph' containing the computational graph of the objective function
j
refernence object of class 'number' represeting the output of the objective function
lr
learning rate
alpha
momentum parameter
niter
number of steps
clone()
The objects of this class are cloneable with this method.
.sgdwm.opt$clone(deep = FALSE)
deep
Whether to make a deep clone.
modello::.opt
-> adam.opt
step()
Performs niter
Adam steps
.adam.opt$step(g, j, lr, beta1, beta2, niter)
g
reference object of class 'graph' containing the computational graph of the objective function
j
refernence object of class 'number' represeting the output of the objective function
lr
learning rate
beta1
first order momentum parameter
beta2
second order momentum parameter
niter
number of steps
clone()
The objects of this class are cloneable with this method.
.adam.opt$clone(deep = FALSE)
deep
Whether to make a deep clone.
Filippo Monari
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.