Description Details Methods Super class Methods Super class Methods Super class Methods Author(s)
Root R6 class representing a generic optmiser
Root R6 class representing a generic optmiser
R6 class representing a SGD optmiser
R6 class representing a SGD optmiser
R6 class representing a SGDWM optmiser
R6 class representing a SGDWM optmiser
R6 class representing an Adam optmiser
R6 class representing an Adam optmiser
Object of this class are created by the '.modello'
session object that linkes them with the corresponding
optimiser in the FORTRAN environment.
new()Initialise the reference object of class 'opt'
.opt$new(name)
namenumber name
finalize()Awares of a reference object associated
to an existing number is removed
.opt$finalize()
name()Returns the name of the optimiser.
.opt$name()
Returns the name of the optmiser
id()Returns the id of the optmiser
(i.e. its position index in the OPTS_ array).
.opt$id()
Returns the id of the optmiser
pop()Pop (removes) the optmiser from the
OPTS_ array.
.opt$pop()
Returns invisible self
is.linked()Checks that the reference object is linked to
a optmiser
.opt$is.linked()
Retursn TRUE if is linked, FALSE otherwise
print()Prints a representation of the optmiser
.opt$print()
clone()The objects of this class are cloneable with this method.
.opt$clone(deep = FALSE)
deepWhether to make a deep clone.
modello::.opt -> sgd.opt
step()Performs niter SGD steps
.sgd.opt$step(g, j, lr, niter)
greference object of class 'graph' containing the computational graph of the objective function
jrefernence object of class 'number' represeting the output of the objective function
lrlearning rate
niternumber of steps
clone()The objects of this class are cloneable with this method.
.sgd.opt$clone(deep = FALSE)
deepWhether to make a deep clone.
modello::.opt -> sgdwm.opt
step()Performs niter SGDWM steps
.sgdwm.opt$step(g, j, lr, alpha, niter)
greference object of class 'graph' containing the computational graph of the objective function
jrefernence object of class 'number' represeting the output of the objective function
lrlearning rate
alphamomentum parameter
niternumber of steps
clone()The objects of this class are cloneable with this method.
.sgdwm.opt$clone(deep = FALSE)
deepWhether to make a deep clone.
modello::.opt -> adam.opt
step()Performs niter Adam steps
.adam.opt$step(g, j, lr, beta1, beta2, niter)
greference object of class 'graph' containing the computational graph of the objective function
jrefernence object of class 'number' represeting the output of the objective function
lrlearning rate
beta1first order momentum parameter
beta2second order momentum parameter
niternumber of steps
clone()The objects of this class are cloneable with this method.
.adam.opt$clone(deep = FALSE)
deepWhether to make a deep clone.
Filippo Monari
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.