metric_sets | R Documentation |
This is a wrapper for metric_set()
with several common forecast / regression
accuracy metrics included. These are the default time series accuracy
metrics used with modeltime_accuracy()
.
default_forecast_accuracy_metric_set(...)
extended_forecast_accuracy_metric_set(...)
... |
Add additional |
The primary purpose is to use the default accuracy metrics to calculate the following
forecast accuracy metrics using modeltime_accuracy()
:
MAE - Mean absolute error, mae()
MAPE - Mean absolute percentage error, mape()
MASE - Mean absolute scaled error, mase()
SMAPE - Symmetric mean absolute percentage error, smape()
RMSE - Root mean squared error, rmse()
RSQ - R-squared, rsq()
Adding additional metrics is possible via ...
.
Extends the default metric set by adding:
MAAPE - Mean Arctangent Absolute Percentage Error, maape()
.
MAAPE is designed for intermittent data where MAPE returns Inf
.
yardstick::metric_tweak()
- For modifying yardstick
metrics
library(tibble)
library(dplyr)
library(timetk)
library(yardstick)
fake_data <- tibble(
y = c(1:12, 2*1:12),
yhat = c(1 + 1:12, 2*1:12 - 1)
)
# ---- HOW IT WORKS ----
# Default Forecast Accuracy Metric Specification
default_forecast_accuracy_metric_set()
# Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set()
# Apply the metric summarizer to new data
calc_default_metrics(fake_data, y, yhat)
# ---- ADD MORE PARAMETERS ----
# Can create a version of mase() with seasonality = 12 (monthly)
mase12 <- metric_tweak(.name = "mase12", .fn = mase, m = 12)
# Add it to the default metric set
my_metric_set <- default_forecast_accuracy_metric_set(mase12)
my_metric_set
# Apply the newly created metric set
my_metric_set(fake_data, y, yhat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.