Nothing
#' @title Modified Mann-Kendall Test For Serially Correlated Data Using the Yue and Wang (2004) Variance Correction Approach Using the Lag-1 Correlation Coefficient Only
#'
#' @description Time series data is often influenced by serial correlation. When data are not random and influenced by autocorrelation, modified Mann-Kendall tests may be used for trend detction. Yue and Wang (2004) have proposed a variance correction approach to address the issue of serial correlation in trend analysis. Data are initially detrended and the effective sample size is calculated using the lag-1 autocorrelation coefficient.
#'
#' @importFrom stats acf median pnorm qnorm
#'
#' @param x - Time series data vector
#'
#' @return Corrected Zc - Z statistic after variance Correction
#'
#' new P.value - P-value after variance correction
#'
#' N/N* - Effective sample size
#'
#' Original Z - Original Mann-Kendall Z statistic
#'
#' Old P-value - Original Mann-Kendall p-value
#'
#' Tau - Mann-Kendall's Tau
#'
#' Sen's Slope - Sen's slope
#'
#' old.variance - Old variance before variance Correction
#'
#' new.variance - Variance after correction
#'
#' @references Kendall, M. (1975). Rank Correlation Methods. Griffin, London, 202 pp.
#'
#' @references Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3): 245-259.
#'
#' @references Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American statistical Association, 63(324): 1379. <doi:10.2307/2285891>
#'
#' @references Yue, S. and Wang, C. Y. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3): 201–218. <doi:10.1023/B:WARM.0000043140.61082.60>
#'
#' @details The variance correction approach suggested by Yue and Wang (2004) is implemeted in this function. Effective sample size is calculated based on the AR(1) assumption.
#'
#' @examples x<-c(Nile)
#' mmky1lag(x)
#'
#' @export
#'
mmky1lag <-function(x) {
# Initialize the test parameters
options(scipen = 999)
# Time series vector
x = x
# Modified Z statistic after variance correction as per Yue and Wang (2004) method
z = NULL
# Original Z statistic for Mann-Kendall test before variance correction
z0 = NULL
# Modified Z statistic after variance correction as per Yue and Wang (2004) method
pval = NULL
# Original p-value for Mann-Kendall test before variance correction
pval0 = NULL
# Initialize Mann-Kendall S statistic
S = 0
# Initialize Mann-Kendall Tau
Tau = NULL
# Correction factor n/n* value as per Yue and Wang (2004) method
essf = NULL
# To test whether the data is in vector format
if (is.vector(x) == FALSE) {
stop("Input data must be a vector")
}
# To test whether the data values are finite numbers and attempting to eliminate non-finite numbers
if (any(is.finite(x) == FALSE)) {
x[-c(which(is.finite(x) == FALSE))] -> x
warning("The input vector contains non-finite numbers. An attempt was made to remove them")
}
n <- length(x)
#Specify minimum input vector length
if (n < 3) {
stop("Input vector must contain at least three values")
}
# Calculating Sen's slope
rep(NA, n * (n - 1)/2) -> V
k = 0
for (i in 1:(n-1)) {
for (j in (i+1):n) {
k = k+1
V[k] = (x[j]-x[i])/(j-i)
}
}
median(V,na.rm=TRUE)->slp
# Calculating trend-free series
t=1:length(x)
xn=(x[1:n])-((slp)*(t))
# Calculating Mann-Kendall S statistic
for (i in 1:(n-1)) {
for (j in (i+1):n) {
S = S + sign(x[j]-x[i])
}
}
# Calculating autocorrelation function of the observations (ro)
#lag.max can be edited to include larger number of lags
acf(xn, lag.max=1, plot=FALSE)$acf[-1] -> ro
# Calculating significant autocorrelation at given confidance interval (rof)
rep(NA,length(ro)) -> rof
for (i in 1:(length(ro))) {
rof[i] <- ro[i]
}
# Calculating sum(1-(k/n))*rof^k) for k=1,2...,(n-1)
ess=0
for(k in 1:(n-1)){
ess<-ess+((1-(1/n))*(rof^(k)))
}
# Calculating variance correction factor (n/n*) as per Yue and Wang (2004)
essf = 1 + 2*(ess)
# Calculating Mann-Kendall variance before correction (Var(s))
var.S = n*(n-1)*(2*n+5)*(1/18);
if(length(unique(x)) < n) {
unique(x) -> aux
for (i in 1:length(aux)) {
length(which(x == aux[i])) -> tie
if (tie > 1) {
var.S = var.S - tie*(tie-1)*(2*tie+5)*(1/18)
}
}
}
# Calculating new variance Var(s)*=(Var(s))*(n/n*) as per Yue and Wang (2004)
VS = var.S * essf
# Calculating Z statistic values before and after variance correction
if (S == 0) {
z = 0
z0 = 0
}else
if (S > 0) {
z = (S-1)/sqrt(VS)
z0 = (S-1)/sqrt(var.S)
} else {
z = (S+1)/sqrt(VS)
z0 = (S+1)/sqrt(var.S)
}
# Calculating p-Value before and after variance correction
pval = 2*pnorm(-abs(z))
pval0 = 2*pnorm(-abs(z0))
# Calculating Kendall's Tau
Tau = S/(.5*n*(n-1))
# Listing all outputs
return(c("Corrected Zc" = z,
"new P-value" = pval,
"N/N*" = essf,
"Original Z" = z0,
"old P.value" = pval0,
"Tau" = Tau,
"Sen's slope" = slp,
"old.variance"=var.S,
"new.variance"= VS))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.