AICweights | R Documentation |
Calculate Akaike information criterion model weights
AICweights(..., k = 2, n = NULL)
... |
|
k |
Penalty per parameter. Default: 2 ; for classical AIC. |
n |
Optional sample size. If specified, the small sample correction AIC is used (i.e., |
Model objects must all be either of class momentuHMM
or multiple imputation model objects (of class HMMfits
and/or miHMM
).
AIC is only valid for comparing models fitted to the same data. The data for each model fit must therefore be identical. For multiple imputation model objects, respective model fits must have identical data.
The AIC weights of the models. If multiple imputation objects are provided, then the mean model weights (and standard deviations) are provided.
## Not run: # HMM specifications nbStates <- 2 stepDist <- "gamma" angleDist <- "vm" mu0 <- c(20,70) sigma0 <- c(10,30) kappa0 <- c(1,1) stepPar0 <- c(mu0,sigma0) anglePar0 <- c(-pi/2,pi/2,kappa0) formula <- ~cov1+cov2 # example$m is a momentuHMM object (as returned by fitHMM), automatically loaded with the package mod1 <- fitHMM(example$m$data,nbStates=nbStates,dist=list(step=stepDist,angle=angleDist), Par0=list(step=stepPar0,angle=anglePar0), formula=~1,estAngleMean=list(angle=TRUE)) Par0 <- getPar0(mod1,formula=formula) mod2 <- fitHMM(example$m$data,nbStates=nbStates,dist=list(step=stepDist,angle=angleDist), Par0=Par0$Par,beta0=Par0$beta, formula=formula,estAngleMean=list(angle=TRUE)) AICweights(mod1,mod2) Par0nA <- getPar0(mod1,estAngleMean=list(angle=FALSE)) mod3 <- fitHMM(example$m$data,nbStates=nbStates,dist=list(step=stepDist,angle=angleDist), Par0=Par0nA$Par,beta0=Par0nA$beta, formula=~1) AICweights(mod1,mod2,mod3) # add'l models provided as a list using the !!! operator AICweights(mod1, !!!list(mod2,mod3)) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.