Nothing
test_that("SurvMODEL_cst", {
# LONG TO COMPUTE AND/OR INPUT FILE NOT STORED FOR CRAN
# 'skip_on_cran: files not in fixtures because of size > 1MB'
testthat::skip_on_cran()
# SD
morseTKTD:::SurvSD_cst(Cw = 8,
time = 0:14,
kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929,
interpolate_length = NULL)
morseTKTD:::SurvSD_cst(Cw = 8,
time = 14,
kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929,
interpolate_length = NULL)
morseTKTD:::SurvSD_cst(Cw = 8,
time = 0:14,
kd = rep(0.7240413,3),
hb = rep(0.01726652,3),
z = rep(16.89198,3),
kk = rep(0.1262929,3),
interpolate_length = NULL)
morseTKTD:::SurvSD_cst(Cw = 8,
time = 14,
kd = rep(0.7240413,3),
hb = rep(0.01726652,3),
z = rep(16.89198,3),
kk = rep(0.1262929,3),
interpolate_length = NULL)
morseTKTD:::SurvSD_cst(Cw = 0,
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929,
interpolate_length = 100)
# IT
morseTKTD:::SurvIT_cst(Cw = 0,
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = NULL)
morseTKTD:::SurvIT_cst(Cw = 0,
time = 4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = NULL)
morseTKTD:::SurvIT_cst(Cw = 0,
time = 0:4,
kd = rep(0.7240413,3),
hb = rep(0.01726652,3),
alpha = rep(17.70611,3),
beta = rep(6.761304,3),
interpolate_length = NULL)
morseTKTD:::SurvIT_cst(Cw = 0,
time = 4,
kd = rep(0.7240413,3),
hb = rep(0.01726652,3),
alpha = rep(17.70611,3),
beta = rep(6.761304,3),
interpolate_length = NULL)
morseTKTD:::SurvIT_cst(Cw = 0,
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = 0)
morseTKTD:::SurvIT_cst(Cw = 0,
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = 100)
})
test_that("Predict_cst", {
# LONG TO COMPUTE AND/OR INPUT FILE NOT STORED FOR CRAN
# 'skip_on_cran: files not in fixtures because of size > 1MB'
testthat::skip_on_cran()
interpolate_length = NULL
df.exp = data.frame(conc = 5, time = 0:4, replicate = 1)
# SD
df.par = data.frame(kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929)
morseTKTD:::predict_cstSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
df.exp = data.frame(conc = 5, time = 14, replicate = 1)
morseTKTD:::predict_cstSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
df.exp = data.frame(conc = 5, time = 0:4, replicate = 1)
df.par = data.frame(kd = rep(0.7240413, 3),
hb = rep(0.01726652, 3),
z = rep(16.89198, 3),
kk = rep(0.1262929, 3))
morseTKTD:::predict_cstSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
df.exp = data.frame(conc = 5, time = 14, replicate = 1)
morseTKTD:::predict_cstSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
# IT
df.exp = data.frame(conc = 5, time = 0:4, replicate = 1)
df.par = data.frame(kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304)
morseTKTD:::predict_cstIT(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
df.exp = data.frame(conc = 5, time = 14, replicate = 1)
morseTKTD:::predict_cstSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
df.par = data.frame(kd = rep(0.7240413, 3),
hb = rep(0.01726652, 3),
alpha = rep(17.70611, 3),
beta = rep(6.761304, 3))
morseTKTD:::predict_cstIT(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
df.exp = data.frame(conc = 5, time = 14, replicate = 1)
morseTKTD:::predict_cstSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length)
})
test_that("CstExpSurvFit", {
# LONG TO COMPUTE AND/OR INPUT FILE NOT STORED FOR CRAN
# 'skip_on_cran: files not in fixtures because of size > 1MB'
testthat::skip_on_cran()
cPRZ_ITfit <- readRDS(test_path("fixtures", "cPRZ_ITfit.rds"))
cPRZ_SDfit <- readRDS(test_path("fixtures", "cPRZ_SDfit.rds"))
# IT
cPRZ_ITpred <- predict(cPRZ_ITfit)
cPRZ_ITpred100 <- predict(cPRZ_ITfit, interpolate_length = 100)
cPRZ_ITpred_1 <- predict(cPRZ_ITfit, display.exposure = data.frame(
conc = 5,
time = 0:9,
replicate = 1
))
cPRZ_ITpred_2 <- predict(cPRZ_ITfit, display.exposure = data.frame(
conc = c(rep(0,10),rep(5,10)),
time = rep(0:9,2),
replicate = c(rep(1,10),rep(2,10))
))
#SD
cPRZ_SDpred <- predict(cPRZ_SDfit)
cPRZ_SDpred100 <- predict(cPRZ_SDfit, interpolate_length = 100)
cPRZ_SDpred_1 <- predict(cPRZ_SDfit, display.exposure = data.frame(
conc = 5,
time = 1:10,
replicate = 1
))
cPRZ_SDpred_2 <- predict(cPRZ_SDfit, display.exposure = data.frame(
conc = c(rep(0,10), rep(5,10)),
time = rep(0:9,2),
replicate = c(rep(1,10), rep(2,10))
))
plot(cPRZ_SDpred100)
})
################################################################################
test_that("SurvMODEL_var", {
# LONG TO COMPUTE AND/OR INPUT FILE NOT STORED FOR CRAN
# 'skip_on_cran: files not in fixtures because of size > 1MB'
testthat::skip_on_cran()
# SD
morseTKTD:::SurvSD_var(Cw = c(10,0,5,3,10),
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929,
interpolate_length = NULL,
interpolate_method = "linear")
morseTKTD:::SurvSD_var(Cw = c(10,0,5,3,10),
time = 0:4,
kd = rep(0.7240413,3),
hb = rep(0.01726652,3),
z = rep(16.89198,3),
kk = rep(0.1262929,3),
interpolate_length = NULL,
interpolate_method = "linear")
morseTKTD:::SurvSD_var(Cw = c(10,0,5,3,10),
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929,
interpolate_length = 100,
interpolate_method = "linear")
# IT
morseTKTD:::SurvIT_var(Cw = c(10,0,5,3,10),
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = NULL,
interpolate_method = "linear")
morseTKTD:::SurvIT_var(Cw = c(10,0,5,3,10),
time = 0:4,
kd = rep(0.7240413,3),
hb = rep(0.01726652,3),
alpha = rep(17.70611,3),
beta = rep(6.761304,3),
interpolate_length = NULL,
interpolate_method = "linear")
morseTKTD:::SurvIT_var(Cw = 0,
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = 0,
interpolate_method = "linear")
morseTKTD:::SurvIT_var(Cw = 0,
time = 0:4,
kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304,
interpolate_length = 100,
interpolate_method = "linear")
})
test_that("Predict_var", {
# LONG TO COMPUTE AND/OR INPUT FILE NOT STORED FOR CRAN
# 'skip_on_cran: files not in fixtures because of size > 1MB'
testthat::skip_on_cran()
interpolate_length = NULL
df.exp = data.frame(conc = c(10,0,5,3,10), time = 0:4, replicate = 1)
# SD
df.par = data.frame(kd = 0.7240413,
hb = 0.01726652,
z = 16.89198,
kk = 0.1262929)
predict_varSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length,
interpolate_method = "linear")
n = 15e3
df.par = data.frame(kd = rep(0.7240413, n),
hb = rep(0.01726652, n),
z = rep(16.89198, n),
kk = rep(0.1262929, n))
start_time <- Sys.time()
a = predict_varSD(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length,
interpolate_method = "linear")
end_time <- Sys.time()
end_time - start_time
# IT
df.par = data.frame(kd = 0.7240413,
hb = 0.01726652,
alpha = 17.70611,
beta = 6.761304)
predict_varIT(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length,
interpolate_method = "linear")
n = 15e3
df.par = data.frame(kd = rep(0.7240413, n),
hb = rep(0.01726652, n),
alpha = rep(17.70611, n),
beta = rep(6.761304, n))
start_time <- Sys.time()
a = predict_varIT(display.exposure = df.exp,
display.parameters = df.par,
interpolate_length = interpolate_length,
interpolate_method = "linear")
end_time <- Sys.time()
end_time - start_time
})
test_that("VarExpSurvFit", {
# LONG TO COMPUTE AND/OR INPUT FILE NOT STORED FOR CRAN
# 'skip_on_cran: files not in fixtures because of size > 1MB'
testthat::skip_on_cran()
vPRZ_ITfit <- readRDS(test_path("fixtures", "vPRZ_ITfit.rds"))
vPRZ_SDfit <- readRDS(test_path("fixtures", "vPRZ_SDfit.rds"))
# SD
df.exp = data.frame(conc = c(10,0,5,3,10), time = 0:4, replicate = 1)
vPRZ_SDpredX <- predict(vPRZ_SDfit, display.exposure = df.exp)
df.exp = data.frame(conc = rep(c(10,0,5,3,10), 11), time = 0:54, replicate = 1)
vPRZ_SDpredX <- predict(vPRZ_SDfit, display.exposure = df.exp)
df.exp = data.frame(conc = rep(c(10,0,5,3,10), 5),
time = rep(0:4, 5),
replicate = rep(1:5, each = 5))
vPRZ_SDpredX <- predict(vPRZ_SDfit, display.exposure = df.exp)
df.exp = data.frame(
conc = rep(0,11),
time = 0:10,
replicate = 1)
vPRZ_SDpredX <- predict(vPRZ_SDfit, display.exposure = df.exp)
# IT
vPRZ_ITpredX <- predict(vPRZ_ITfit, display.exposure = df.exp)
vPRZ_ITpred <- predict(vPRZ_ITfit)
vPRZ_ITpred100 <- predict(vPRZ_ITfit, interpolate_length = 100)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.