inst/optimal-control.R

# install.packages("pracma")
# install.packages("matlib")
# install.packages("NlcOptim")
library("pracma")
library("matlib")


# sample data
# mosquito count from data
y_in <- c(
  15, 40, 45, 88, 99, 145, 111, 132, 177, 97, 94, 145, 123, 111,
  125, 115, 155, 160, 143, 132, 126, 125, 105, 98, 87, 54, 55, 8
)

# day of year in which measurments making up yin occur, Jan 1st = day 1
t_in_user <- c(
  93, 100, 107, 114, 121, 128, 135, 142, 149, 163, 170, 177,
  184, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261,
  267, 274, 281, 288
)


if (length(y_in) != length(t_in_user)) {
  stop("input data mismatch")
}


# User inputs (aside from trap data inputs)

# mu = natural mosquito death rate
mu <- 1 / 14 # program should set mu = 1 / tau_mosq, where tau_mosq is the mosquito lifetime input by user in units of days
# tau_mosq should be bounded between 1 and 30

# m = number of mosquito lifetimes for population decay between seasons..
m <- 3 # this will be input by the user, and must be an integer greater than 2, upperbound 100, default value 3

# N_lam = max fourier mode order to calculate
N_lam <- 25
# user input between 1 and 200, default value 25 (I referred to this as jmax over Skype - JD)



# setting up time and trap count vectors to fit the model to


# first round user time inputs to integer values
t_in <- round(t_in_user)


# defining N0 = number of input data points (not a user input)
N0 <- length(y_in)

# defining vector of time differences to be used later (not a user input)
delta_t_in <- numeric(N0 - 1)
for (i in 1:(N0 - 1)) {
  delta_t_in[i] <- t_in[i + 1] - t_in[i]
  if (delta_t_in[i] < 0) {
    stop("non-increasing measurement times")
  }
}



# N_pts = number of points in extended data set, N_pts = N0 + 3 always (not a user input)
N_pts <- N0 + 3

# defining extended trap count and time data vectors
t_dat <- numeric(N_pts)

if (t_in[1] - m / mu > 0) {
  y_dat <- c(0, 0, y_in, 0)

  t_dat[1] <- 0
  t_dat[2] <- (m - 1) / mu
  for (i in 3:(N_pts - 1)) {
    t_dat[i] <- t_in[i - 2] - t_in[1] + m / mu
  }
  t_dat[N_pts] <- t_dat[N_pts - 1] + (m) / mu

  t_dat <- matrix(t_dat, ncol = 1)
} else {
  y_dat <- c(0, y_in, 0, 0)

  t_dat[1] <- 0
  for (i in 2:(N_pts - 2)) {
    t_dat[i] <- t_in[i - 1]
  }
  t_dat[N_pts - 1] <- t_dat[N_pts - 2] + (2 * (m - 1)) / mu - t_dat[2]
  t_dat[N_pts] <- t_dat[N_pts - 1] + 1 / mu
}


# extended vector of time differences
delta_t_dat <- numeric(N_pts)
for (i in 1:(N_pts - 1)) {
  delta_t_dat[i] <- t_dat[i + 1] - t_dat[i]
}

delta_t_dat[N_pts] <- 0

delta_t_dat <- matrix(delta_t_dat, ncol = 1)

# tau = length of 'season' in days
tau <- t_dat[N_pts]
# Defining matrices 'J' and 'M'

# J matrix and inverse
J <- matrix(0, nrow = N_pts, ncol = N_pts)

for (i in 1:(N_pts - 1)) {
  J[i, i] <- 1
  J[i + 1, i] <- -exp(-mu * delta_t_dat[i])
}

J[N_pts, N_pts] <- 1
J[1, N_pts] <- -exp(-mu * delta_t_dat[N_pts])


# M matrix and inverse
M <- matrix(0, nrow = N_pts, ncol = N_pts)

for (i in 2:(N_pts - 1)) {
  M[i, i] <- (1 - exp(-mu * delta_t_dat[i - 1])) / (mu * delta_t_dat[i - 1]) - exp(-mu * delta_t_dat[i - 1])
  M[i + 1, i] <- 1 - (1 - exp(-mu * delta_t_dat[i])) / (mu * delta_t_dat[i])
}

M[N_pts, N_pts] <- (1 - exp((-1) * mu * delta_t_dat[N_pts - 1])) / (mu * delta_t_dat[(N_pts - 1)]) - exp(-mu * delta_t_dat[(N_pts - 1)])
M[1, N_pts] <- 0
M[1, 1] <- 0
M[2, 1] <- 1 - (1 - exp(-mu * delta_t_dat[1])) / (mu * delta_t_dat[(1)])



###### weighting code code
# Weight matrix: diagonal entries to be filled with sqrt(number of counts on day) except for the artifical 0 measurments on end of data
W <- matrix(0, nrow = N_pts, ncol = N_pts)

if (t_in[(1)] - m / mu > 0) {
  W[1, 1] <- 1
  W[2, 2] <- 1
  W[N_pts, N_pts] <- 1

  for (i in 3:N_pts - 1) {
    W[i, i] <- sqrt(1) # fill sqrt(number of counts) here
  }
} else {
  W[1, 1] <- 1
  W[N_pts - 1, N_pts - 1] <- 1
  W[N_pts, N_pts] <- 1

  for (i in 2:N_pts - 2) {
    W[i, i] <- sqrt(1) # fill sqrt(number of counts) here
  }
}

# Obtaining emergence rate vector lambda_dat by contrained optimization

Aeq <- matrix(numeric(N_pts), nrow = 1)
Aeq[(1)] <- 1
Aeq[(N_pts)] <- -1
beq <- 0
bineq <- numeric(N_pts)
lb <- numeric(N_pts)
###################



objective_fun <- function(x) {
  t(W %*% ((1 / mu) * (mldivide(J, (M %*% x), pinv = TRUE)) - y_dat)) %*% (W %*% ((1 / mu) * (mldivide(J, (M %*% x), pinv = TRUE)) - y_dat))
}


lambda_dat <- fmincon(numeric(N_pts), objective_fun, gr = NULL, method = "SQP", A = (-(1 / mu) * (inv(J) %*% (M))), b = bineq, Aeq = Aeq, beq = beq, lb = lb, ub = NULL)

#########

# Calculating emergence rate fourier modes lam_fourier

lam_fourier <- numeric(N_lam + 1)
for (j in 1:(N_pts - 1)) {
  lam_fourier[1] <- lam_fourier[1] + (1 / tau) * (lambda_dat$par[j] + lambda_dat$par[j + 1]) * delta_t_dat[j] / 2
} # zero mode


for (k in 2:(N_lam + 1)) # non-zero postive modes (negative modes given by complex conjugates of positve modes)
{
  for (j in 1:(N_pts - 1)) {
    lam_fourier[(k)] <- lam_fourier[(k)] + ((lambda_dat$par[(j + 1)] - lambda_dat$par[(j)]) / delta_t_dat[(j)]) * (tau / (2 * pi * (k - 1))) * ((exp(-2 * pi * complex(real = 0, imaginary = 1) * (k - 1) * t_dat[(j + 1)] / tau) - exp(-2 * pi * complex(real = 0, imaginary = 1) * (k - 1) * t_dat[(j)] / tau)) / (2 * pi * (k - 1))) + complex(real = 0, imaginary = 1) * (lambda_dat$par[(j + 1)] * exp(-2 * pi * complex(real = 0, imaginary = 1) * (k - 1) * t_dat[(j + 1)] / tau) - lambda_dat$par[(j)] * exp(-2 * pi * complex(real = 0, imaginary = 1) * (k - 1) * t_dat[(j)] / tau)) / (2 * pi * (k - 1))
  }
}


# defing functions for optimization code
# goto line 1670 or so to skip past all of these definitons

# Permutaion function: For a given list of numbers, this function outputs a matrix, where each row is a unique permutation of the list
uperm <- function(d) {
  dat <- factor(d)
  N <- length(dat)
  n <- tabulate(dat)
  ng <- length(n)
  if (ng == 1) {
    return(d)
  }
  a <- N - c(0, cumsum(n))[-(ng + 1)]
  foo <- lapply(1:ng, function(i) matrix(combn(a[i], n[i]), nrow = n[i]))
  out <- matrix(NA, nrow = N, ncol = prod(sapply(foo, ncol)))
  xxx <- c(0, cumsum(sapply(foo, nrow)))
  xxx <- cbind(xxx[-length(xxx)] + 1, xxx[-1])
  miss <- matrix(1:N, ncol = 1)
  for (i in seq_len(length(foo) - 1)) {
    l1 <- foo[[i]]
    nn <- ncol(miss)
    miss <- matrix(rep(miss, ncol(l1)), nrow = nrow(miss))
    k <- (rep(0:(ncol(miss) - 1), each = nrow(l1))) * nrow(miss) +
      l1[, rep(1:ncol(l1), each = nn)]
    out[xxx[i, 1]:xxx[i, 2], ] <- matrix(miss[k], ncol = ncol(miss))
    miss <- matrix(miss[-k], ncol = ncol(miss))
  }
  k <- length(foo)
  out[xxx[k, 1]:xxx[k, 2], ] <- miss
  out <- out[rank(as.numeric(dat), ties = "first"), ]
  foo <- cbind(as.vector(out), as.vector(col(out)))
  out[foo] <- d
  t(out)
}



# this function computes the "P" product and exponentials for a given k
P_vals <- function(z, rho, Npulse, tau, k) {
  P_func <- function(x) {
    rho * 1 / (log(1 / (1 - rho)) - 2 * pi * complex(real = 0, imaginary = 1) * x)
  }

  z_vec <- matrix(0, nrow = Npulse, ncol = 1)

  for (i in 1:Npulse) {
    z_vec[i, 1] <- z[i]
  }

  # determine number of integer vectors to permute (will be smaller for
  # only two and three pulses). number of combos = N_terms

  if (k == 0) {
    if (Npulse == 2) {
      N_terms <- 5
    } else if (Npulse == 3) {
      N_terms <- 7
    } else {
      N_terms <- 8
    }


    # create a matrix to hold the integer vectors to permute, and
    # initialize to zero. Each column will give an integer vector
    int_vecs <- matrix(0, nrow = Npulse, ncol = N_terms)

    # the first 5 integer vectors have at most two non-zero elements.
    # This loop replaces the first two zeros in the first 5 columns of int_vecs
    # with the appropriate integers.
    for (i in 1:5) {
      int_vecs[1:2, i] <- c((i - 1), -(i - 1))
    }

    # if there are are three or more pulses, we need to include
    # integer vectors with three non-zero terms
    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- c(2, -1, -1)
      int_vecs[1:3, 7] <- c(-2, 1, 1)
    }

    # if there are four or more pulses, then we need to include an
    # integer vector with four non-zero terms
    if (Npulse >= 4) {
      int_vecs[1:4, 8] <- c(1, 1, -1, -1)
    }


    # calculates the "P" functions for each column of integer combos in
    # int_vec.  "P" function values are independet of integer
    # permutations. pre_factors is a list which holds the "P"-function
    # values for each integer combo
    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }


    # Now calculate the exponential terms which will multiply the "P"functions in the pre_factors list
    # post_factors = list of the exponential terms to multiply the
    #               corresponding "P" functions in the pre_factors list
    post_factors <- numeric(N_terms) # initialize to zero

    for (i in 1:N_terms) { # for each integer combo given by the columns of int_vecs...

      # calculates the unique permutations of the ith integer combo
      # int_vecs(:, i) = ith column of int_vecs matrix
      # perm_list = Nperms x Npulse matrix, where Nperms is the number
      #           of unique permutations of the ith integer combo
      # Each row of perm_list gives a unique permutaion of the ith integer combo
      perm_list <- uperm(int_vecs[, i])

      if (i == 1) {
        Nperms <- 1
      } else {
        Nperms <- length(perm_list[, 1]) # number of unique permutations of the ith integer combo
      }


      for (m in 1:Nperms) { # for each uniqe permutation of the ith integer combo, add the corresponding      exponential to the running total of the corresponding post_factor value

        if (i == 1) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * (perm_list %*% z) / tau)
        } else {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * (perm_list[m, ] %*% z) / tau)
        }
      } # perm_list[m, ] = mth row of perm_list = mth unique permutaton of ith integer combo
    }



    val <- 0
    for (i in 1:N_terms) { # add together the (pre_factor * post_factor) for each integer combo
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 1) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else {
      N_terms <- 8
    }


    int_vecs <- matrix(0, nrow = Npulse, ncol = N_terms)
    for (i in 1:5) {
      int_vecs[1:2, i] <- sign(k) * c(kk + (i - 1), -(i - 1))
    }

    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(1, 1, -1)
      int_vecs[1:3, 7] <- sign(k) * c(3, -1, -1)
      int_vecs[1:3, 8] <- sign(k) * c(2, -2, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }

    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]

      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }


    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  }
  else if (abs(k) == 2) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else if (Npulse == 3) {
      N_terms <- 6
    } else {
      N_terms <- 7
    }
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 2, -2)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 3, -3)

    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(2, -1, 1)
    }
    if (Npulse >= 4) {
      int_vecs[1:4, 7] <- sign(k) * c(1, 1, 1, -1)
    }


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }

    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 2 && i == 2) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]

        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }


    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 3) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else {
      N_terms <- 8
    }

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 2, -2)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 3, -3)


    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(1, 1, 1)
      int_vecs[1:3, 7] <- sign(k) * c(3, 1, -1)
      int_vecs[1:3, 8] <- sign(k) * c(2, 2, -1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 3 && i == 6) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]

        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }


    val <- 0

    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 4) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else if (Npulse == 3) {
      N_terms <- 7
    } else {
      N_terms <- 8
    }


    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 2, -2)

    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(4, -1, 1)
      int_vecs[1:3, 7] <- sign(k) * c(2, 1, 1)
    }
    if (Npulse >= 4) {
      int_vecs[1:4, 8] <- sign(k) * c(1, 1, 1, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 4 && i == 8) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else if (Npulse == 2 && i == 3) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]


        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }
    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 5) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else {
      N_terms <- 7
    }

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 2, -2)


    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(2, 2, 1)
      int_vecs[1:3, 7] <- sign(k) * c(3, 1, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 6) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 6
    } else {
      N_terms <- 7
    }

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 3, 3)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 6] <- sign(k) * c(kk + 2, -2)


    if (Npulse >= 3) {
      int_vecs[1:3, 7] <- sign(k) * c(4, 1, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 2 && i == 4) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]


        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }


    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 7) {
    kk <- abs(k)

    N_terms <- 6
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 3, 3)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 6] <- sign(k) * c(kk + 2, -2)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 8) {
    kk <- abs(k)

    N_terms <- 6
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 5] <- sign(k) * c(kk - 3, +3)
    int_vecs[1:2, 6] <- sign(k) * c(kk - 4, +4)



    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 2 && i == 6) {
        Nperm <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]


        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 9) {
    kk <- abs(k)

    N_terms <- 5
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 5] <- sign(k) * c(kk - 3, +3)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 10) {
    kk <- abs(k)

    N_terms <- 4
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 2, 2)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 11) {
    kk <- abs(k)

    N_terms <- 4

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 2, 2)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    out <- val
  } else {
    kk <- abs(k)

    N_terms <- 3
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * P_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[i] * post_factors[i]
    }

    return(val)
  }
}




# this function computes the "Q" product and exponentials with the fourier modes for a given k
Q_vals <- function(z, rho, Npulse, tau, j, jj) {
  Q_func <- function(x) {
    (rho / (1 - rho)) * 1 / (log(1 / (1 - rho)) + 2 * pi * complex(real = 0, imaginary = 1) * x)
  }

  k <- -(j + jj)

  # determine number of integer vectors to permute (will be smaller for
  # only two and three pulses). number of combos = N_terms
  if (k == 0) {
    if (Npulse == 2) {
      N_terms <- 5
    } else if (Npulse == 3) {
      N_terms <- 7
    } else {
      N_terms <- 8
    }


    # create a matrix to hold the integer vectors to permute, and
    # initialize to zero. Each column will give an integer vector
    int_vecs <- matrix(0, nrow = Npulse, ncol = N_terms)

    # the first 5 integer vectors have at most two non-zero elements.
    # This loop replaces the first two zeros in the first 5 columns of int_vecs
    # with the appropriate integers.
    for (i in 1:5) {
      int_vecs[1:2, i] <- c((i - 1), -(i - 1))
    }

    # if there are are three or more pulses, we need to include
    # integer vectors with three non-zero terms
    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- c(2, -1, -1)
      int_vecs[1:3, 7] <- c(-2, 1, 1)
    }

    # if there are four or more pulses, then we need to include an
    # integer vector with four non-zero terms
    if (Npulse >= 4) {
      int_vecs[1:4, 8] <- c(1, 1, -1, -1)
    }


    # calculates the "P" functions for each column of integer combos in
    # int_vec.  "P" function values are independet of integer
    # permutations. pre_factors is a list which holds the "P"-function
    # values for each integer combo
    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }


    # Now calculate the exponential terms which will multiply the "P"functions in the pre_factors list
    # post_factors = list of the exponential terms to multiply the
    #               corresponding "P" functions in the pre_factors list
    post_factors <- numeric(N_terms) # initialize to zero

    for (i in 1:N_terms) { # for each integer combo given by the columns of int_vecs...

      # calculates the unique permutations of the ith integer combo
      # int_vecs(:, i) = ith column of int_vecs matrix
      # perm_list = Nperms x Npulse matrix, where Nperms is the number
      #           of unique permutations of the ith integer combo
      # Each row of perm_list gives a unique permutaion of the ith integer combo
      perm_list <- uperm(int_vecs[, i])

      if (i == 1) {
        Nperms <- 1
      } else {
        Nperms <- length(perm_list[, 1]) # number of unique permutations of the ith integer combo
      }


      for (m in 1:Nperms) { # for each uniqe permutation of the ith integer combo, add the corresponding      exponential to the running total of the corresponding post_factor value

        if (i == 1) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * (perm_list %*% z) / tau)
        } else {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * (perm_list[m, ] %*% z) / tau)
        }
      } # perm_list[m, ] = mth row of perm_list = mth unique permutaton of ith integer combo
    }



    val <- 0
    for (i in 1:N_terms) { # add together the (pre_factor * post_factor) for each integer combo
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 1) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else {
      N_terms <- 8
    }


    int_vecs <- matrix(0, nrow = Npulse, ncol = N_terms)
    for (i in 1:5) {
      int_vecs[1:2, i] <- sign(k) * c(kk + (i - 1), -(i - 1))
    }

    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(1, 1, -1)
      int_vecs[1:3, 7] <- sign(k) * c(3, -1, -1)
      int_vecs[1:3, 8] <- sign(k) * c(2, -2, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }

    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]

      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }


    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  }
  else if (abs(k) == 2) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else if (Npulse == 3) {
      N_terms <- 6
    } else {
      N_terms <- 7
    }
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 2, -2)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 3, -3)

    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(2, -1, 1)
    }
    if (Npulse >= 4) {
      int_vecs[1:4, 7] <- sign(k) * c(1, 1, 1, -1)
    }


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }

    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 2 && i == 2) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]

        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }


    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 3) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else {
      N_terms <- 8
    }

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 2, -2)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 3, -3)


    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(1, 1, 1)
      int_vecs[1:3, 7] <- sign(k) * c(3, 1, -1)
      int_vecs[1:3, 8] <- sign(k) * c(2, 2, -1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)
    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 3 && i == 6) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]

        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }


    val <- 0

    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 4) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else if (Npulse == 3) {
      N_terms <- 7
    } else {
      N_terms <- 8
    }


    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 2, -2)

    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(4, -1, 1)
      int_vecs[1:3, 7] <- sign(k) * c(2, 1, 1)
    }
    if (Npulse >= 4) {
      int_vecs[1:4, 8] <- sign(k) * c(1, 1, 1, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 4 && i == 8) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else if (Npulse == 2 && i == 3) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]


        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }
    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 5) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 5
    } else {
      N_terms <- 7
    }

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 2, -2)


    if (Npulse >= 3) {
      int_vecs[1:3, 6] <- sign(k) * c(2, 2, 1)
      int_vecs[1:3, 7] <- sign(k) * c(3, 1, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 6) {
    kk <- abs(k)

    if (Npulse == 2) {
      N_terms <- 6
    } else {
      N_terms <- 7
    }

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 3, 3)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 6] <- sign(k) * c(kk + 2, -2)


    if (Npulse >= 3) {
      int_vecs[1:3, 7] <- sign(k) * c(4, 1, 1)
    }

    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 2 && i == 4) {
        Nperms <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]


        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }


    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 7) {
    kk <- abs(k)

    N_terms <- 6
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 3, 3)
    int_vecs[1:2, 5] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 6] <- sign(k) * c(kk + 2, -2)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 8) {
    kk <- abs(k)

    N_terms <- 6
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 4] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 5] <- sign(k) * c(kk - 3, +3)
    int_vecs[1:2, 6] <- sign(k) * c(kk - 4, +4)



    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])

      if (Npulse == 2 && i == 6) {
        Nperm <- 1
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
      } else {
        Nperms <- dim(perm_list)[1]


        for (m in 1:Nperms) {
          post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 9) {
    kk <- abs(k)

    N_terms <- 5
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 2, 2)
    int_vecs[1:2, 5] <- sign(k) * c(kk - 3, +3)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 10) {
    kk <- abs(k)

    N_terms <- 4
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 2, 2)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    return(val)
  } else if (abs(k) == 11) {
    kk <- abs(k)

    N_terms <- 4

    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)
    int_vecs[1:2, 4] <- sign(k) * c(kk - 2, 2)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[1, i] * post_factors[i]
    }

    out <- val
  } else {
    kk <- abs(k)

    N_terms <- 3
    int_vecs <- matrix(0, Npulse, N_terms)

    int_vecs[1:2, 1] <- sign(k) * c(kk + 0, 0)
    int_vecs[1:2, 2] <- sign(k) * c(kk - 1, 1)
    int_vecs[1:2, 3] <- sign(k) * c(kk + 1, -1)


    pre_factors <- matrix(1, ncol = N_terms, nrow = 1)

    for (i in 1:N_terms) {
      for (m in 1:Npulse) {
        pre_factors[1, i] <- pre_factors[1, i] * Q_func(int_vecs[m, i])
      }
    }
    post_factors <- numeric(N_terms)
    for (i in 1:N_terms) {
      perm_list <- uperm(int_vecs[, i])
      Nperms <- dim(perm_list)[1]


      for (m in 1:Nperms) {
        post_factors[i] <- post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
      }
    }

    val <- 0
    for (i in 1:N_terms) {
      val <- val + pre_factors[i] * post_factors[i]
    }

    return(val)
  }
}


# this function computes the fourier sum for 1 pulse
sum_1_pulse <- function(z, rho, mu, tau, kmax, modes) {
  jmax <- length(modes) # modes is the list of fourier modes, jmax = number of list elements
  out_val <- 0 # running total for output value

  P_func <- function(x) {
    rho * 1 / (log(1 / (1 - rho)) - 2 * pi * complex(real = 0, imaginary = 1) * x)
  }
  Q_func <- function(x) {
    (rho / (1 - rho)) * 1 / (log(1 / (1 - rho)) + 2 * pi * complex(real = 0, imaginary = 1) * x)
  }


  for (k in -kmax:kmax) {
    pre_factor <- P_func(k)

    post_factor <- exp(-2 * pi * complex(real = 0, imaginary = 1) * k * z / tau)
    P_val <- pre_factor * post_factor

    Q_val <- 0

    for (j in (-jmax + 1):(jmax - 1)) {
      pre_factor <- Q_func(-k - j)
      post_factor <- exp(-2 * pi * complex(real = 0, imaginary = 1) * (-k - j) * z / tau)

      if (j == 0) {
        Q_val <- Q_val + pre_factor * post_factor * modes[1] / mu
      } else if (j < 0) {
        Q_val <- Q_val + pre_factor * post_factor * Conj(modes[-(j - 1)]) / mu
      } else if (j > 0) {
        Q_val <- Q_val + pre_factor * post_factor * modes[j + 1] / mu
      }
    }


    out_val <- out_val + (P_val) * (Q_val) / (1 - log(1 - rho) / (mu * tau) - 2 * pi * complex(real = 0, imaginary = 1) * k / (mu * tau))
  }

  return(Re(out_val))
}

# this function computes the Fourier sum for N pulses, where the "P" and "Q" products and exponentials are computeded by the "P_vals" and "Q_vals" functions
sum_N_pulse <- function(z, rho, Npulse, mu, tau, kmax, modes) {
  jmax <- length(modes)
  out_val <- 0 # running total for output


  for (k in -kmax:kmax) {
    P_val <- P_vals(z, rho, Npulse, tau, k) # compute "P" product and exponentials at this k value

    Q_val <- 0 # running total for "Q" product and exponentials
    # add together "Q" products and exponentials at (k + j) value for all j emergence fourier modes
    for (j in (-jmax + 1):(jmax - 1)) {

      # if (abs(k+j) < kmax){

      if (j == 0) {
        Q_val <- Q_val + Q_vals(z, rho, Npulse, tau, k, j) * modes[1] / mu # zero fourier mode
      } else if (j < 0) {
        Q_val <- Q_val + Q_vals(z, rho, Npulse, tau, k, j) * Conj(modes[-(j - 1)]) / mu # negative fourier modes
      } else if (j > 0) {
        Q_val <- Q_val + Q_vals(z, rho, Npulse, tau, k, j) * modes[j + 1] / mu # positive fourier modes
      }
      # }
    }

    # add contribution from this k value to running output total
    out_val <- out_val + (P_val) * (Q_val) / (1 - Npulse * log(1 - rho) / (mu * tau) - 2 * pi * complex(real = 0, imaginary = 1) * k / (mu * tau))
  }
  out <- Re(out_val)
  return(out)
}


## optimization parameters set by user


kmax <- 20 # max number of dynamics fourier modes to use in calculating fourier sum (different than N_lam = max emergence fourier mode set by user for curve fitting portion of the code.  I've often refered to N_lam as jmax when we've talked.  Hopefully not too confusing). kmax should be an integer between 2 and 200, defualt at 20

global_opt <- 0 # set to 0 if user chooses local optimum, 1 if user chooses golbal GN_DIRECT_L_RAND method, 2 if user chooses global GN_ISRES mthod

Npulse <- 4 # number of pulses, set by user, integer between 1 and 10
rho <- .30 # percent knockdown (user set between .01 and .30, e.g. 1% to 30% knockdown)
days_between <- 3 # minimum number of days allowed between pulses set by user (integer bewtween 0 and 30 days)


# code to execute optimization algorithms

# install.packages("nloptr")
library("nloptr") # used for local cobyla optimum function and global optimum functions

if (Npulse == 1) { # 1 pulse
  fun1 <- function(x) sum_1_pulse(x, rho, mu, tau, kmax, lam_fourier)
  guess <- tau / 2


  if (global_opt == 0) { # local optimum
    opt_out <- cobyla(guess, fun1, lower = 0, upper = tau)

    times <- opt_out$par
    ave_pop_fourier <- opt_out$value
  } else if (global_opt == 1) { # global optimum directL

    opt_out <- directL(fun1, lower = 0, upper = tau, randomized = TRUE)

    times <- opt_out$par
    ave_pop_fourier <- opt_out$value
  } else if (global_opt == 2) { # global optimum isres


    opt_out <- nloptr(x0 = guess, eval_f = fun1, lb = 0, ub = tau, eval_g_ineq = NULL, eval_g_eq = NULL, opts = list(algorithm = "NLOPT_GN_ISRES", maxeval = 10000))

    times <- opt_out$solution
    ave_pop_fourier <- opt_out$objective
  }
} else { # 2 or more pulses
  funN <- function(x) sum_N_pulse(x, rho, Npulse, mu, tau, kmax, lam_fourier)

  # matrix and vector for inequality constraints to enforce minimum days between
  A_mat <- matrix(0, nrow = Npulse - 1, ncol = Npulse)
  b_vec <- (-1) * days_between * matrix(1, Npulse - 1, 1)

  for (i in 1:(Npulse - 1)) {
    A_mat[i, i] <- 1
    A_mat[i, i + 1] <- -1
  }


  l_bound <- numeric(Npulse) # column vector of zeros for pulse lower bound
  u_bound <- tau * matrix(1, Npulse, 1) # column vector of taus for pulse upper bound

  guess <- numeric(Npulse) # vector for initial guesses for fmincon

  for (i in 1:Npulse) {
    if (t_in[1] - m / mu > 0) {
      guess[i] <- i * (t_dat[N_pts - 1] - t_dat[3]) / (Npulse + 1) + t_dat[3]
    } else {
      guess[i] <- i * (t_dat[N_pts - 2] - t_dat[2]) / (Npulse + 1) + t_dat[2]
    }
  }

  if (global_opt == 0) { # local optimum

    opt_out <- fmincon(guess, funN, gr = NULL, method = "SQP", A = A_mat, b = b_vec, Aeq = NULL, beq = NULL, lb = l_bound, ub = u_bound)


    times <- opt_out$par
    ave_pop_fourier <- opt_out$value
  } else if (global_opt == 1) { # global optimum directL

    opt_out <- directL(funN, lower = l_bound, upper = u_bound, randomized = TRUE)

    times <- opt_out$par
    ave_pop_fourier <- opt_out$value
  } else if (global_opt == 2) { # global optimum isres

    ineq <- function(x) {
      (-1) * A_mat %*% x - b_vec
    }

    opt_out <- nloptr(x0 = guess, eval_f = funN, lb = l_bound, ub = u_bound, eval_g_ineq = ineq, eval_g_eq = NULL, opts = list(algorithm = "NLOPT_GN_ISRES", maxeval = 10000))

    times <- opt_out$solution
    ave_pop_fourier <- opt_out$objective
  }
}


# code to shift times and generate plot data

# shift pulse times back to original times input by user
if (t_in[1] - (m / mu) > 0) {
  pulse_times_output <- times - t_dat[3] + t_in[1]
} else {
  pulse_times_output <- times - t_dat[2] + t_in[1]
}




# code to plot results:
t_steps <- 6 * tau * 10 + 1 # ten time steps per day, six total seasons (need to integrate over many seasons to reach periodic population curves)
t_vec <- linspace(0, 6 * tau, n = t_steps)
# list between 0 and 6*tau, t_steps long


y_fourier_controlled <- numeric(t_steps) # list (row vector) for controlled population values at each time step
y_fourier_uncontrolled <- numeric(t_steps) # list (row vector) for uncontrolled population values at each time step


# simple integrator to calculate population values
for (i in 2:t_steps) {
  for (j in 1:N_pts - 1) {
    if (mod(t_vec[i - 1], tau) >= t_dat[j] && mod(t_vec[i - 1], tau) < t_dat[j + 1]) {
      y_fourier_controlled[i] <- y_fourier_controlled[i - 1] + (-mu * y_fourier_controlled[i - 1] + lambda_dat$par[j + 1] * (mod(t_vec[i - 1], tau) - t_dat[j]) / delta_t_dat[j] + lambda_dat$par[j] * (t_dat[j + 1] - mod(t_vec[i - 1], tau)) / delta_t_dat[j]) * (t_vec[i] - t_vec[i - 1])

      y_fourier_uncontrolled[i] <- y_fourier_uncontrolled[i - 1] + (-mu * y_fourier_uncontrolled[i - 1] + lambda_dat$par[j + 1] * (mod(t_vec[i - 1], tau) - t_dat[j]) / delta_t_dat[j] + lambda_dat$par[j] * (t_dat[j + 1] - mod(t_vec[i - 1], tau)) / delta_t_dat[j]) * (t_vec[i] - t_vec[i - 1])
    }
  }

  # impulses for the controlled population
  for (j in 1:Npulse) {
    if (mod(t_vec[i], tau) >= times[j] && mod(t_vec[i - 1], tau) < times[j]) {
      y_fourier_controlled[i] <- (1 - rho) * y_fourier_controlled[i]
    }
  }
}

pop_cont <- numeric(10 * tau + 1) # list for controlled population vlaues, one season long
pop_un_cont <- numeric(10 * tau + 1) # list for uncontrolled population vlaues, one season long
t_vec_plot <- numeric(10 * tau + 1) # list for time values, one season long

for (i in 1:(10 * tau + 1)) {
  pop_cont[i] <- y_fourier_controlled[i + 10 * tau * 5] # take controlled population values from the integration for the final season
  pop_un_cont[i] <- y_fourier_uncontrolled[i + 10 * tau * 5] # take uncontrolled population values from the integration for the final season

  # shift plot times for population curves back to original times input by user
  if (t_in[1] - m / mu > 0) {
    t_vec_plot[i] <- t_vec[i] - t_dat[(3)] + t_in[(1)]
  } else {
    t_vec_plot[i] <- t_vec[i] - t_dat[(2)] + t_in[(1)]
  }
}


# shift data times back to orginal times input by user
if (t_in[(1)] - (m / mu) > 0) {
  t_dat_plot <- t_dat - t_dat[(3)] + t_in[(1)]
} else {
  t_dat_plot <- t_dat - t_dat[2] + t_in[1]
}

# code to generate outputs to user

# install.packages("sfsmisc")
library("sfsmisc") # for the integrate.xy function


ave_pop_un_cont <- integrate.xy(t_vec_plot, pop_un_cont) / (tau)
ave_pop_cont <- integrate.xy(t_vec_plot, pop_cont) / (tau)

percent_reduction <- (ave_pop_un_cont - ave_pop_cont) / ave_pop_un_cont
accuracy_measure <- (ave_pop_fourier - ave_pop_cont) / ave_pop_cont


# outputs to display to user
print(pulse_times_output) # times of optimal pulses in units of day of year
print(ave_pop_un_cont) # average population over interval (0, tau) under uncontrolledfourier dynamics
print(ave_pop_cont) # average population over interval (0, tau) under controlled fourier dynamics
print(percent_reduction) # fractional reduction in average controlled population relative to uncontrolled
print(accuracy_measure) # reliability measuere - if the magnitude of this quantity is larger than .05 or .1 or so, then the fourier sum may be of unrelaiable accuracy, and the user should try increasing kmax

# plots to display to user
plot(t_dat_plot, y_dat,
     ylim = c(0, 1.5 * max(y_dat)), xlim = c(t_dat_plot[1], t_dat_plot[1] + tau), col = "blue",
     main = "Fitted Population Model",
     ylab = "Mosquito population count",
     xlab = "Day of year"
)
lines(t_vec_plot, pop_un_cont, col = "red")
lines(t_vec_plot, pop_cont, col = "orange")
legend("topleft", c("Data", "Uncontrolled Fourier Approximation", "Controlled Fourier Approximation"), fill = c("blue", "red", "orange"))

Try the mosqcontrol package in your browser

Any scripts or data that you put into this service are public.

mosqcontrol documentation built on Aug. 7, 2020, 5:06 p.m.