Nothing
#' Akaike's An Information Criterion for detection functions
#'
#' Extract the AIC from a fitted detection function.
#'
#' @param object a fitted detection function object
#' @param k penalty per parameter to be used; the default \code{k = 2} is the
#' "classical" AIC
#' @param \dots optionally more fitted model objects.
#' @author David L Miller
#' @export
#' @importFrom stats logLik
#' @aliases AIC.ds AIC.io AIC.io.fi AIC.rem AIC.rem.fi AIC.trial AIC.trial.fi
AIC.ddf <- function(object, ..., k=2){
# get the models
models <- list(object, ...)
models$k <- NULL
# build the table
aics <- matrix(NA, nrow=length(models), ncol=2)
for(i in seq_along(models)){
ll <- logLik(models[[i]])
aics[i, 1] <- attr(ll, "df")
aics[i, 2] <- -2*ll + k*attr(ll, "df")
}
# make it a data.frame
aics <- as.data.frame(aics)
names(aics) <- c("df", "AIC")
# add row names
call <- match.call(expand.dots=TRUE)
call$k <- NULL
rownames(aics) <- as.character(call)[-1]
return(aics)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.