Nothing
#' Data from the Amsterdam Cohort Studies on HIV infection and AIDS
#'
#' These data sets give the times (in years) from HIV infection to AIDS, SI
#' switch and death in 329 men who have sex with men (MSM). Data are from the
#' period until combination anti-retroviral therapy became available (1996).
#' For more background information on the cohort, ccr5 and SI, see Geskus
#' \emph{et al.} (2000, 2003)
#'
#' \code{aidssi} contains follow-up data until the first of AIDS and SI switch.
#' It was used as example for the competing risks analyses in Putter, Fiocco,
#' Geskus (2007) and in Geskus (2016).
#'
#' \code{aidssi2} extends the \code{aidssi} data set in three ways. First, it
#' considers events after the initial one. Second, it includes the entry times
#' of the individuals that entered the study after HIV infection. Third, age at
#' HIV infection has been added as extra covariable. Numbers differ slightly
#' from the \code{aidssi} data set. Some individuals were diagnosed with AIDS
#' only when they died and others had their last follow-up at AIDS diagnosis.
#' In order to prevent two transitions to happen at the same time, their time
#' to AIDS was shortened by 0.25 years. This data set was used as example for
#' the multi-state analyses in Geskus (2016).
#'
#'
#' @name aidssi
#' @aliases aidssi aidssi2
#' @docType data
#' @format aidssi \tabular{ll}{ patnr:\tab Patient identification number\cr
#' time:\tab Time from HIV infection to first of SI appearance and AIDS, or
#' last follow-up\cr status:\tab Event indicator; 0 = censored, 1 = AIDS, 2 =
#' SI appearance\cr cause:\tab Failure cause; factor with levels "event-free",
#' "AIDS", "SI"\cr ccr5:\tab CCR5 genotype; factor with levels "WW" (wild type
#' allele on both chromosomes),\cr \tab "WM" (mutant allele on one
#' chromosome)\cr } aidssi2 \tabular{ll}{ patnr:\tab Patient identification
#' number\cr entry.time:\tab Time from HIV infection to cohort entry. Value is
#' zero if HIV infection occurred while in follow-up.\cr aids.time:\tab Time
#' from HIV infection to AIDS, or last follow-up if AIDS was not observed\cr
#' aids.stat:\tab Event indicator with respect to AIDS, with values 0
#' (censored) and 1 (AIDS)\cr si.time:\tab Time from HIV infection to SI
#' switch, or last follow-up if SI switch was not observed\cr si.stat:\tab
#' Event indicator with respect to SI switch, with values 0 (no switch) and 1
#' (switch)\cr death.time:\tab Time from HIV infection to death, or last
#' follow-up if death was not observed\cr death.stat:\tab Event indicator with
#' respect to death; 0 = alive, 1 = dead\cr age.inf:\tab Age at HIV
#' infection\cr ccr5:\tab CCR5 genotype; factor with levels "WW" (wild type
#' allele on both chromosomes),\cr \tab "WM" (mutant allele on one
#' chromosome)\cr }
#' @references Geskus, Ronald B. (2016). \emph{Data Analysis with Competing
#' Risks and Intermediate States.} CRC Press, Boca Raton.
#'
#' Putter H, Fiocco M, Geskus RB (2007). Tutorial in biostatistics: Competing
#' risks and multi-state models. \emph{Statistics in Medicine} \bold{26},
#' 2389--2430.
#' @source Geskus RB (2000). On the inclusion of prevalent cases in HIV/AIDS
#' natural history studies through a marker-based estimate of time since
#' seroconversion. \emph{Statistics in Medicine} \bold{19}, 1753--1769.
#'
#' Geskus RB, Miedema FA, Goudsmit J, Reiss P, Schuitemaker H, Coutinho RA
#' (2003). Prediction of residual time to AIDS and death based on markers and
#' cofactors. \emph{Journal of AIDS} \bold{32}, 514--521.
#' @keywords datasets
NULL
#' BMT data from Klein and Moeschberger
#'
#' A data frame of 137 rows (patients) and 22 columns. The included variables
#' are \describe{ \item{group}{ Disease group; 1 = ALL, 2 = AML Low Risk, 3 =
#' AML High Risk } \item{t1}{ Time in days to death or last follow-up }
#' \item{t2}{ Disease-free survival time in days (time to relapse, death or
#' last follow-up) } \item{d1}{ Death indicator; 1 = dead, 0 = alive }
#' \item{d2}{ Relapse indicator; 1 = relapsed, 0 = disease-free } \item{d3}{
#' Disease-free survival indicator; 1 = dead or relapsed, 0 = alive and
#' disease-free) } \item{ta}{ Time in days to Acute Graft-versus-Host Disease
#' (AGVHD) } \item{da}{ Acute GVHD indicator; 1 = Acute GVHD, 0 = No Acute GVHD
#' } \item{tc}{ Time (days) to Chronic Graft-vrsus-Host Disease (CGVHD) }
#' \item{dc}{ Chronic GVHD indicator; 1 = Chronic GVHD, 0 = No Chronic GVHD }
#' \item{tp}{ Time (days) to platelet recovery } \item{dp}{ Platelet recovery
#' indicator; 1 = platelets returned to normal, 0 = platelets never returned to
#' normal } \item{z1}{ Patient age in years } \item{z2}{ Donor age in years }
#' \item{z3}{ Patient sex; 1 = male, 0 = female } \item{z4}{ Donor sex; 1 =
#' male, 0 = female } \item{z5}{ Patient CMV status; 1 = CMV positive, 0 = CMV
#' negative } \item{z6}{ Donor CMV status; 1 = CMV positive, 0 = CMV negative }
#' \item{z7}{ Waiting time to transplant in days } \item{z8}{ FAB; 1 = FAB
#' grade 4 or 5 and AML, 0 = Otherwise } \item{z9}{ Hospital; 1 = The Ohio
#' State University, 2 = Alferd , 3 = St. Vincent, 4 = Hahnemann } \item{z10}{
#' MTX used as a Graft-versus-Host prophylactic; 1 = yes, 0 = no } }
#'
#' @name bmt
#' @aliases bmt
#' @format A data frame, see \code{\link{data.frame}}.
#' @references Klein and Moeschberger (1997). \emph{Survival Analysis
#' Techniques for Censored and Truncated Data}, Springer, New York.
#' @keywords datasets
NULL
#' Data from the European Society for Blood and Marrow Transplantation (EBMT)
#'
#' A data frame of 1977 patients transplanted for CML. The included variables
#' are \describe{ \item{patid}{Patient identification number} \item{srv}{Time
#' in days from transplantation to death or last follow-up}
#' \item{srvstat}{Survival status; 1 = death; 0 = censored} \item{rel}{Time in
#' days from transplantation to relapse or last follow-up}
#' \item{relstat}{Relapse status; 1 = relapsed; 0 = censored}
#' \item{yrel}{Calendar year of relapse; factor with levels "1993-1996","
#' 1997-1999", "2000-"} \item{age}{Patient age at transplant (years)}
#' \item{score}{Gratwohl score; factor with levels "Low risk", "Medium risk",
#' "High risk"} }
#'
#'
#' @name EBMT year of relapse data
#' @aliases ebmt1
#' @docType data
#' @format A data frame, see \code{\link{data.frame}}.
#' @source We acknowledge the European Society for Blood and Marrow
#' Transplantation (EBMT) for making available these data. Disclaimer: these
#' data were simplified for the purpose of illustration of the analysis of
#' competing risks and multi-state models and do not reflect any real life
#' situation. No clinical conclusions should be drawn from these data.
#' @keywords datasets
NULL
#' Data from the European Society for Blood and Marrow Transplantation (EBMT)
#'
#' A data frame of 8966 patients transplanted at the EBMT. The included
#' variables are \describe{ \item{id}{Patient identification number}
#' \item{time}{Time in months from transplantation to death or last follow-up}
#' \item{status}{Survival status; 0 = censored; 1,...,6 = death due to the
#' following causes: Relapse (1), GvHD (2), Bacterial infections (3), Viral
#' infections (4), Fungal infections (5), Other causes (6)} \item{cod}{Cause of
#' death as factor with levels "Alive", "Relapse", "GvHD", "Bacterial",
#' "Viral", "Fungal", "Other"} \item{dissub}{Disease subclassification; factor
#' with levels "AML", "ALL", "CML"} \item{match}{Donor-recipient gender match;
#' factor with levels "No gender mismatch", "Gender mismatch"}
#' \item{tcd}{T-cell depletion; factor with levels "No TCD", "TCD", "Unknown"}
#' \item{year}{Year of transplantation; factor with levels "1985-1989",
#' "1990-1994", "1995-1998"} \item{age}{Patient age at transplant; factor with
#' levels "<=20", "20-40", ">40"} }
#'
#'
#' @name EBMT cause of death data
#' @aliases ebmt2
#' @docType data
#' @format A data frame, see \code{\link{data.frame}}.
#' @references Fiocco M, Putter H, van Houwelingen JC (2005). Reduced rank
#' proportional hazards model for competing risks. \emph{Biostatistics}
#' \bold{6}, 465--478.
#' @source We acknowledge the European Society for Blood and Marrow
#' Transplantation (EBMT) for making available these data. Disclaimer: these
#' data were simplified for the purpose of illustration of the analysis of
#' competing risks and multi-state models and do not reflect any real life
#' situation. No clinical conclusions should be drawn from these data.
#' @keywords datasets
NULL
#' Data from the European Society for Blood and Marrow Transplantation (EBMT)
#'
#' A data frame of 2204 patients transplanted at the EBMT between 1995 and
#' 1998. These data were used in Section 4 of the tutorial on competing risks
#' and multi-state models (Putter, Fiocco & Geskus, 2007). The included
#' variables are \describe{ \item{id}{Patient identification number}
#' \item{prtime}{Time in days from transplantation to platelet recovery or last
#' follow-up} \item{prstat}{Platelet recovery status; 1 = platelet recovery, 0
#' = censored} \item{rfstime}{Time in days from transplantation to relapse or
#' death or last follow-up (relapse-free survival time)}
#' \item{rfsstat}{Relapse-free survival status; 1 = relapsed or dead, 0 =
#' censored} \item{dissub}{Disease subclassification; factor with levels "AML",
#' "ALL", "CML"} \item{age}{Patient age at transplant; factor with levels
#' "<=20", "20-40", ">40"} \item{drmatch}{Donor-recipient gender match; factor
#' with levels "No gender mismatch", "Gender mismatch"} \item{tcd}{T-cell
#' depletion; factor with levels "No TCD", "TCD"} }
#'
#'
#' @name EBMT platelet recovery data
#' @aliases ebmt3
#' @docType data
#' @format A data frame, see \code{\link{data.frame}}.
#' @references Putter H, Fiocco M, Geskus RB (2007). Tutorial in biostatistics:
#' Competing risks and multi-state models. \emph{Statistics in Medicine}
#' \bold{26}, 2389--2430.
#' @source We acknowledge the European Society for Blood and Marrow
#' Transplantation (EBMT) for making available these data. Disclaimer: these
#' data were simplified for the purpose of illustration of the analysis of
#' competing risks and multi-state models and do not reflect any real life
#' situation. No clinical conclusions should be drawn from these data.
#' @keywords datasets
NULL
#' Data from the European Society for Blood and Marrow Transplantation (EBMT)
#'
#' A data frame of 2279 patients transplanted at the EBMT between 1985 and
#' 1998. These data were used in Fiocco, Putter & van Houwelingen (2008), van
#' Houwelingen & Putter (2008, 2012) and de Wreede, Fiocco & Putter (2011). The
#' included variables are \describe{ \item{id}{Patient identification number}
#' \item{rec}{Time in days from transplantation to recovery or last follow-up}
#' \item{rec.s}{Recovery status; 1 = recovery, 0 = censored} \item{ae}{Time in
#' days from transplantation to adverse event (AE) or last follow-up}
#' \item{ae.s}{Adverse event status; 1 = adverse event, 0 = censored}
#' \item{recae}{Time in days from transplantation to both recovery and AE or
#' last follow-up} \item{recae.s}{Recovery and AE status; 1 = both recovery and
#' AE, 0 = no recovery or no AE or censored} \item{rel}{Time in days from
#' transplantation to relapse or last follow-up} \item{rel.s}{Relapse status; 1
#' = relapse, 0 = censored} \item{srv}{Time in days from transplantation to
#' death or last follow-up} \item{srv.s}{Relapse status; 1 = dead, 0 =
#' censored} \item{year}{Year of transplantation; factor with levels
#' "1985-1989", "1990-1994", "1995-1998"} \item{agecl}{Patient age at
#' transplant; factor with levels "<=20", "20-40", ">40"}
#' \item{proph}{Prophylaxis; factor with levels "no", "yes"}
#' \item{match}{Donor-recipient gender match; factor with levels "no gender
#' mismatch", "gender mismatch"} }
#'
#'
#' @name EBMT data
#' @aliases ebmt4
#' @docType data
#' @format A data frame, see \code{\link{data.frame}}.
#' @references Fiocco M, Putter H, van Houwelingen HC (2008). Reduced-rank
#' proportional hazards regression and simulation-based prediction for
#' multi-state models. \emph{Statistics in Medicine} \bold{27}, 4340--4358.
#'
#' van Houwelingen HC, Putter H (2008). Dynamic predicting by landmarking as an
#' alternative for multi-state modeling: an application to acute lymphoid
#' leukemia data. \emph{Lifetime Data Anal} \bold{14}, 447--463.
#'
#' van Houwelingen HC, Putter H (2012). Dynamic Prediction in Clinical Survival
#' Analaysis. Chapman & Hall/CRC Press, Boca Raton.
#'
#' de Wreede LC, Fiocco M, and Putter H (2011). mstate: An R Package for the
#' Analysis of Competing Risks and Multi-State Models. \emph{Journal of
#' Statistical Software}, Volume 38, Issue 7.
#' @source We acknowledge the European Society for Blood and Marrow
#' Transplantation (EBMT) for making available these data. Disclaimer: these
#' data were simplified for the purpose of illustration of the analysis of
#' competing risks and multi-state models and do not reflect any real life
#' situation. No clinical conclusions should be drawn from these data.
#' @keywords datasets
NULL
#' Data preparation, estimation and prediction in multi-state models
#'
#' Functions for data preparation, descriptives, (hazard) estimation and
#' prediction (Aalen-Johansen) in competing risks and multi-state models.
#'
#' \tabular{ll}{ Package: \tab mstate\cr Type: \tab Package\cr Version: \tab
#' 0.2.10\cr Date: \tab 2016-12-03\cr License: \tab GPL 2.0\cr }
#'
#' @name mstate-package
#' @aliases mstate-package mstate
#' @docType package
#' @author Liesbeth de Wreede, Marta Fiocco, Hein Putter. Maintainer: Hein
#' Putter <H.Putter@@lumc.nl>
#' @references Putter H, Fiocco M, Geskus RB (2007). Tutorial in biostatistics:
#' Competing risks and multi-state models. \emph{Statistics in Medicine}
#' \bold{26}, 2389--2430.
#'
#' de Wreede LC, Fiocco M, and Putter H (2010). The mstate package for
#' estimation and prediction in non- and semi-parametric multi-state and
#' competing risks models. \emph{Computer Methods and Programs in Biomedicine}
#' \bold{99}, 261--274.
#'
#' de Wreede LC, Fiocco M, and Putter H (2011). mstate: An R Package for the
#' Analysis of Competing Risks and Multi-State Models. \emph{Journal of
#' Statistical Software}, Volume 38, Issue 7.
#' @keywords package
NULL
#' Abnormal prothrombin levels in liver cirrhosis
#'
#' A data frame of 488 liver cirrhosis patients from a randomized clinical
#' trial concerning prednisone treatment in these patients. The dataset is in
#' long format. The included variables are \describe{ \item{id}{Patient
#' identification number} \item{from}{Starting state} \item{to}{Receiving
#' state} \item{trans}{Transition number} \item{Tstart}{Starting time}
#' \item{Tstop}{Transition time} \item{status}{Status variable; 1=transition,
#' 0=censored} \item{treat}{Treatment; factor with levels "Placebo",
#' "Prednisone"} }
#'
#' This data was kindly provided by Per Kragh Andersen. It was introduced in
#' Andersen, Borgan, Gill & Keiding (1993), Example 1.3.12, and used as
#' illustration for computation of transition probabilities in multi-state
#' models, see Sections IV.4 (Example IV.4.4) and VII.2 (Example VII.2.10).
#'
#' @name Liver cirrhosis data
#' @aliases prothr
#' @docType data
#' @format A data frame, see \code{\link{data.frame}}.
#' @references Andersen PK, Borgan O, Gill RD, Keiding N (1993).
#' \emph{Statistical Models Based on Counting Processes}. Springer, New York.
#' @keywords datasets
NULL
#' Help functions for transition matrix
#'
#' Help functions to get insight into the structure of a transition matrix.
#'
#' Function \code{to.trans2} simply lists the transitions in \code{trans} in a
#' data frame; function \code{trans2Q} converts \code{trans} to a \code{Q}
#' matrix, the (j,k)th element of which contains the (shortest) number of
#' transitions needed to travel from the jth to the kth state; function
#' \code{absorbing} returns a vector (named if \code{trans} contains row or
#' columnc names) with the state numbers that are absorbing; function
#' \code{is.circular} returns (a Boolean) whether the transition matrix
#' specified in \code{trans} is circular or not.
#'
#' @name transhelp
#' @aliases to.trans2 trans2Q absorbing is.circular
#' @param trans Transition matrix, for instance produced by \code{transMat}),
#' \code{trans.comprisk}, or \code{trans.illdeath}
#' @return See details.
#' @author Hein Putter <H.Putter@@lumc.nl>
#' @keywords univar
#' @examples
#'
#' # Irreversible illness-death model
#' tmat <- trans.illdeath(c("Healthy", "Illness", "Death"))
#' tmat
#' to.trans2(tmat)
#' trans2Q(tmat)
#' absorbing(tmat)
#' is.circular(tmat)
#' # Reversible illness-death model
#' tmat <- transMat(x = list( c(2, 3), c(1, 3), c() ),
#' names = c("Healthy", "Illness", "Death"))
#' tmat
#' to.trans2(tmat)
#' trans2Q(tmat)
#' absorbing(tmat)
#' is.circular(tmat)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.