Description Class Hierarchy Constructor Slots Methods Details Author(s) References Examples
The mtkNativeEvaluator class is a sub-class of the class mtkEvaluator used to manage
the simulation task implemented locally (i.e. tasks don't need to call services from the Web). It provides all the slots and methods defined in the class mtkEvaluator.
mtkEvaluator
mtkNativeEvaluatorsignature(model=NULL, Y=NULL, information=NULL)
model:(ANY) a string, an R fonction, or NULL to inform the model to simulate.
name:(character) always takes the string "evaluate".
protocol:(character) a string to name the protocol used to run the process: http, system, R, etc. Here, it always takes "R".
site:(character) a string to indicate where the service is located. Here, it always takes "mtk".
service:(character) a string to name the service to invoke.
parameters:(vector) a vector of [mtkParameter] containing the parameters to pass while calling the service.
ready:(logical) a logical to tell if the process is ready to run.
state:(logical) a logical to tell if the results produced by the process are available and ready to be consumed.
result:(ANY) a data holder to hold the results produced by the process
setNamesignature(this = "mtkNativeEvaluator", name = "character"): Not used, method inherited from the parent class.
setParameterssignature(this = "mtkNativeEvaluator", f = "vector"): Assigns new parameters to the process.
getParameterssignature(this = "mtkNativeEvaluator"): Returns the parameters as a named list.
is.readysignature( = "mtkNativeEvaluator"): Tests if the process is ready to run.
setReadysignature(this = "mtkNativeEvaluator", switch = "logical"): Makes the process ready to run.
is.readysignature( = "mtkNativeEvaluator"): Tests if the results produced by the process are available.
setReadysignature(this = "mtkNativeEvaluator", switch = "logical"): Marks the process as already executed.
getResultsignature(this = "mtkNativeEvaluator"): Returns the results produced by the process as a [mtkEvaluatorResult].
getDatasignature(this = "mtkNativeEvaluator"): Returns the results produced by the process as a data.frame.
serializeOnsignature(this = "mtkNativeEvaluator"): Returns all data managed by the process as a named list.
runsignature(this = "mtkNativeEvaluator", context= "mtkExpWorkflow"): runs the simulation.
summarysignature(object = "mtkNativeEvaluator"): Provides a summary of the results produced by the process.
printsignature(x = "mtkNativeEvaluator"): Prints a report of the results produced by the process.
plotsignature(x = "mtkNativeEvaluator"): Plots the results produced by the process.
reportsignature(this = "mtkNativeEvaluator"): Reports the results produced by the process.
We can construct an object of the mtkNativeEvaluator class from the following situations:
1)
2) 3) the experimental design is produced off-line and available as a data.frame.
We can construct an object of the mtkNativeEvaluator class from the following situations:
The evaluator is provided within the package "mtk";
The evaluator is provided as an R function outside the package "mtk";
The simulation is carried out off-line. We just want to use the "mtk" package for reporting.
Juhui WANG, MIA-Jouy, Inra, Juhui.Wang@jouy.inra.fr
J. Wang, H. Richard, R. Faivre, H. Monod (2013). Le package mtk, une bibliothèque R pour l'exploration numérique des modèles.
In: Analyse de sensibilité et exploration de modèles : Application aux sciences de la nature et de l'environnement
(R. Faivre, B. Iooss, S. Mahévas, D. Makowski, H. Monod, Eds). Editions Quae, Versailles.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ## 1) Create a model simulation with the model "Ishigami" implemented in the package "mtk"
evaluator <- mtkNativeEvaluator(model="Ishigami")
## 2) Create a model simulation with a R function implemented outside the package "mtk"
# a) Create a R function to represent the model of population
ME <- function(K, Y0, a, t=5, ...){
res <- exp(-a*t)
res <- Y0+res*(K-Y0)
res <- K*Y0/res
out <- as.integer(res)
return(out)
}
# b) Do the sensitivity analysis for the function "ME"
K <- make.mtkFactor(name="K", nominal=400, distribName="unif",
distribPara=list(min=100, max=1000))
Y0 <- make.mtkFactor(name="Y0", nominal=20, distribName="unif",
distribPara=list(min=1, max=40))
a <- make.mtkFactor(name="a", nominal=0.1, distribName="unif",
distribPara=list(min=0.05, max=0.2))
factors <- mtkExpFactors(list(K,Y0,a))
plan <- mtkNativeDesigner ("BasicMonteCarlo",
information=c(size=500))
model <- mtkNativeEvaluator(model=ME, information=c(t=5))
index<- mtkNativeAnalyser("Regression", information=c(nboot=20) )
expt <- mtkExpWorkflow( expFactors=factors,
processesVector=c(
design= plan,
evaluate= model,
analyze= index)
)
run(expt)
summary(expt)
## 3) Import the results of model simulation produced off-line
## into an object of mtkNativeEvaluator
data <- data.frame()
model <- mtkNativeEvaluator(Y=data,
information = list(model="Ishigami"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.