Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message=FALSE-----------------------------------------------------
library(tidyverse)
library(multitool)
# create some data
the_data <-
data.frame(
id = 1:500,
iv1 = rnorm(500),
iv2 = rnorm(500),
iv3 = rnorm(500),
mod = rnorm(500),
dv1 = rnorm(500),
dv2 = rnorm(500),
include1 = rbinom(500, size = 1, prob = .1),
include2 = sample(1:3, size = 500, replace = TRUE),
include3 = rnorm(500)
)
# create a pipeline blueprint
full_pipeline <-
the_data |>
add_filters(include1 == 0, include2 != 3, include3 > -2.5) |>
add_variables(var_group = "ivs", iv1, iv2, iv3) |>
add_variables(var_group = "dvs", dv1, dv2) |>
add_model("linear model", lm({dvs} ~ {ivs} * mod))
# expand the pipeline
expanded_pipeline <- expand_decisions(full_pipeline)
# Run the multiverse
multiverse_results <- run_multiverse(expanded_pipeline)
multiverse_results
## ----unnest-------------------------------------------------------------------
multiverse_results |> unnest(model_fitted)
## ----tidy---------------------------------------------------------------------
multiverse_results |>
unnest(model_fitted) |>
unnest(model_parameters)
## ----glance-------------------------------------------------------------------
multiverse_results |>
unnest(model_fitted) |>
unnest(model_performance)
## ----reveal-------------------------------------------------------------------
multiverse_results |>
reveal(.what = model_fitted)
## ----which--------------------------------------------------------------------
multiverse_results |>
reveal(.what = model_fitted, .which = model_parameters)
## ----reveal-model-parameters--------------------------------------------------
multiverse_results |>
reveal_model_parameters()
## ----reveal-model-performance-------------------------------------------------
multiverse_results |>
reveal_model_performance()
## ----unpack-specs-wide--------------------------------------------------------
multiverse_results |>
reveal_model_parameters(.unpack_specs = "wide")
## ----unpack-specs-long--------------------------------------------------------
multiverse_results |>
reveal_model_performance(.unpack_specs = "long")
## ----condense-----------------------------------------------------------------
# model performance r2 summaries
multiverse_results |>
reveal_model_performance() |>
condense(r2, list(mean = mean, median = median))
# model parameters for our predictor of interest
multiverse_results |>
reveal_model_parameters() |>
filter(str_detect(parameter, "iv")) |>
condense(coefficient, list(mean = mean, median = median))
## ----group_by-condense1-------------------------------------------------------
multiverse_results |>
reveal_model_parameters(.unpack_specs = "wide") |>
filter(str_detect(parameter, "iv")) |>
group_by(ivs, dvs) |>
condense(coefficient, list(mean = mean, median = median))
## ----group_by-condense2-------------------------------------------------------
multiverse_results |>
reveal_model_parameters(.unpack_specs = "wide") |>
group_by(parameter, dvs) |>
condense(coefficient, list(mean = mean, median = median))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.