Nothing
#' construct a new pre-processing pipeline
#'
#' @keywords internal
#' @noRd
prepper <- function() {
steps <- list()
ret <- list(steps=steps)
class(ret) <- c("prepper", "list")
ret
}
#' @export
add_node.prepper <- function(x, step,...) {
x$steps[[length(x$steps)+1]] <- step
x
}
#' @importFrom purrr compose
#' @export
prep.prepper <- function(x,...) {
steps <- x$steps
tinit <- function(X) {
xin <- X
for (i in 1:length(steps)) {
xin <- steps[[i]]$forward(xin)
}
rm(X)
xin
}
tform <- function(X, colind=NULL) {
xin <- X
for (i in 1:length(steps)) {
xin <- steps[[i]]$apply(xin, colind)
}
rm(X)
xin
}
rtform <- function(X, colind=NULL) {
xin <- X
for (i in length(steps):1) {
xin <- steps[[i]]$reverse(xin, colind)
}
rm(X)
xin
}
#Xp <- if (!missing(X)) {
# tinit(X)
#}
#environment(tinit) <- rlang::new_environment()
#environment(tform) <- rlang::new_environment()
#environment(rtform) <- rlang::new_environment()
ret <- list(
preproc=x,
init=tinit,
transform=tform,
reverse_transform=rtform)
class(ret) <- "pre_processor"
ret
}
#' @export
fresh.prepper <- function(x,...) {
p <- prepper()
for (step in x$steps) {
p <- prep_node(p, step$name, step$create)
}
p
}
#' @export
init_transform.pre_processor <- function(x, X,...) {
x$init(X)
}
#' @export
apply_transform.pre_processor <- function(x, X, colind=NULL,...) {
x$transform(X,colind)
}
#' @export
reverse_transform.pre_processor <- function(x, X, colind=NULL,...) {
x$reverse_transform(X, colind)
}
#' @export
fresh.pre_processor <- function(x, preproc=prepper(),...) {
p <- x$create()
}
#' prepare a new node and add to pipeline
#'
#' @param pipeline the pre-processing pipeline
#' @param name the name of the step to add
#' @param create the creation function
#'
#' @keywords internal
#' @noRd
prep_node <- function(pipeline, name, create, ...) {
node <- create()
ret <- list(name=name,
create=create,
forward=node$forward,
reverse=node$reverse,
apply=node$apply,
...)
class(ret) <- c(name, "pre_processor")
add_node(pipeline, ret)
}
new_pre_processor <- function(x) {
chk::chk_not_null(x[["forward"]])
chk::chk_not_null(x[["apply"]])
chk::chk_not_null(x[["reverse"]])
chk::chk_function(x[["forward"]])
chk::chk_function(x[["apply"]])
chk::chk_function(x[["reverse"]])
funlist <- x
structure(funlist,
class="pre_processing_step")
}
#' a no-op pre-processing step
#'
#' `pass` simply passes its data through the chain
#'
#' @param preproc the pre-processing pipeline
#' @return a `prepper` list
#' @export
pass <- function(preproc=prepper()) {
create <- function() {
list(
forward = function(X, colind=NULL) {
X
},
reverse = function(X, colind=NULL) {
X
},
apply = function(X, colind=NULL) {
X
}
)
}
prep_node(preproc, "pass", create)
}
## TODO for centering sparse matrices, see:
## https://stackoverflow.com/questions/39284774/column-rescaling-for-a-very-large-sparse-matrix-in-r
##
#' center a data matrix
#'
#' remove mean of all columns in matrix
#'
#' @param cmeans optional vector of precomputed column means
#'
#' @inheritParams pass
#' @export
#' @importFrom Matrix colMeans
#' @return a `prepper` list
center <- function(preproc = prepper(), cmeans=NULL) {
create <- function() {
#env = new.env()
env <- rlang::new_environment()
env[["cmeans"]] <- cmeans
list(
forward = function(X) {
if (is.null(env[["cmeans"]])) {
cmeans <- colMeans(X)
env[["cmeans"]] <- cmeans
} else {
cmeans <- env[["cmeans"]]
chk::chk_equal(ncol(X), length(cmeans))
}
#print(cmeans)
#message("forward cmeans:", env[["cmeans"]])
sweep(X, 2, cmeans, "-")
},
apply = function(X, colind = NULL) {
cmeans <- env[["cmeans"]]
#message("apply cmeans:", cmeans)
if (is.null(colind)) {
sweep(X, 2, cmeans, "-")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, cmeans[colind], "-")
}
},
reverse = function(X, colind = NULL) {
chk::chk_not_null(env[["cmeans"]])
if (is.null(colind)) {
#message("reverse cmeans: ", env[["cmeans"]])
sweep(X, 2, env[["cmeans"]], "+")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, env[["cmeans"]][colind], "+")
}
}
)
}
prep_node(preproc, "center", create)
}
#' scale a data matrix
#'
#' normalize each column by a scale factor.
#'
#' @inheritParams pass
#'
#' @param type the kind of scaling, `unit` norm, `z`-scoring, or precomputed `weights`
#' @param weights optional precomputed weights
#' @return a `prepper` list
#' @export
colscale <- function(preproc = prepper(),
type = c("unit", "z", "weights"),
weights = NULL) {
type <- match.arg(type)
if (type != "weights" && !is.null(weights)) {
warning("colscale: weights ignored because type != 'weights'")
}
if (type == "weights") {
chk::chk_not_null(weights)
}
create <- function() {
#env = new.env()
env <- rlang::new_environment()
list(
forward = function(X) {
wts <- if (type == "weights") {
chk::chk_equal(length(weights), ncol(X))
weights
} else {
sds <- matrixStats::colSds(X)
if (type == "unit") {
sds <- sds * sqrt(nrow(X) - 1)
}
sds[sds == 0] <- stats::median(sds)
1 / sds
}
env[["weights"]] <- wts
sweep(X, 2, wts, "*")
},
apply = function(X, colind = NULL) {
if (is.null(colind)) {
sweep(X, 2, env[["weights"]], "*")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, env[["weights"]][colind], "*")
}
},
reverse = function(X, colind = NULL) {
if (is.null(colind)) {
sweep(X, 2, env[["weights"]], "/")
} else {
chk::chk_equal(ncol(X), length(colind))
sweep(X, 2, env[["weights"]][colind], "/")
}
}
)
}
prep_node(preproc, "colscale", create)
}
#' center and scale each vector of a matrix
#'
#' @param cmeans an optional vector of column means
#' @param sds an optional vector of sds
#' @inheritParams pass
#' @return a `prepper` list
#' @export
standardize <- function(preproc = prepper(), cmeans=NULL, sds=NULL) {
create <- function() {
#env = new.env()
env <- rlang::new_environment()
list(
forward = function(X) {
if (is.null(sds)) {
sds <- matrixStats::colSds(X)
} else {
chk::chk_equal(length(sds), ncol(X))
}
if (is.null(cmeans)) {
cmeans <- colMeans(X)
} else {
chk::chk_equal(length(cmeans), ncol(X))
}
sds[sds == 0] <- mean(sds)
env[["sds"]] <- sds
env[["cmeans"]] <- cmeans
x1 <- sweep(X, 2, cmeans, "-")
sweep(x1, 2, sds, "/")
},
apply = function(X, colind = NULL) {
if (is.null(colind)) {
x1 <- sweep(X, 2, env[["cmeans"]], "-")
sweep(x1, 2, env[["sds"]], "/")
} else {
chk::chk_equal(ncol(X), length(colind))
x1 <- sweep(X, 2, env[["cmeans"]][colind], "-")
sweep(x1, 2, env[["sds"]][colind], "/")
}
},
reverse = function(X, colind = NULL) {
if (is.null(colind)) {
x0 <- sweep(X, 2, env[["sds"]], "*")
sweep(x0, 2, env[["cmeans"]], "+")
} else {
chk::chk_equal(ncol(X), length(colind))
x0 <- sweep(X, 2, env[["sds"]][colind], "*")
sweep(x0, 2, env[["cmeans"]][colind], "+")
}
}
)
}
prep_node(preproc, "standardize", create)
}
#' bind together blockwise pre-processors
#'
#'
#' concatenate a sequence of pre-processors, each previously applied to a block of data.
#'
#' @param preprocs a list of initialized `pre-processor` objects
#' @param block_indices a list of block indices where each vector in the list
#' contains the global indices of the variables.
#' @return a new `prepper` object
#' @examples
#'
#' p1 <- center() |> prep()
#' p2 <- center() |> prep()
#'
#' x1 <- rbind(1:10, 2:11)
#' x2 <- rbind(1:10, 2:11)
#'
#' p1a <- init_transform(p1,x1)
#' p2a <- init_transform(p2,x2)
#'
#' clist <- concat_pre_processors(list(p1,p2), list(1:10, 11:20))
#' t1 <- apply_transform(clist, cbind(x1,x2))
#'
#' t2 <- apply_transform(clist, cbind(x1,x2[,1:5]), colind=1:15)
#' @export
concat_pre_processors <- function(preprocs, block_indices) {
chk::chk_equal(length(preprocs), length(block_indices))
unraveled_ids <- unlist(block_indices)
blk_ids <- rep(seq_along(block_indices), sapply(block_indices,length))
idmap <- data.frame(id_global=unraveled_ids,
id_block=unlist(lapply(block_indices, function(x) seq_along(x))),
block=blk_ids)
apply_fun <- function(f, X, colind) {
#browser()
chk::chk_equal(ncol(X), length(colind))
keep <- idmap$id_global %in% colind
blks <- sort(unique(idmap$block[keep]))
idmap2 <- idmap[keep,]
do.call(cbind, lapply(blks, function(i) {
loc <- idmap2$id_block[idmap2$block == i]
offset <- which(idmap2$block == i)
f(preprocs[[i]], X[,offset,drop=FALSE], colind=loc)
}))
}
ret <- list(
transform = function(X, colind = NULL) {
if (!is.null(colind)) {
apply_fun(apply_transform, X, colind)
} else {
chk::chk_equal(ncol(X), length(unraveled_ids))
do.call(cbind, lapply(1:length(block_indices), function(i) {
apply_transform(preprocs[[i]], X[,block_indices[[i]]])
}))
}
},
reverse_transform = function(X, colind = NULL) {
if (!is.null(colind)) {
apply_fun(reverse_transform, X, colind)
} else {
chk::chk_equal(ncol(X), length(unraveled_ids))
do.call(cbind, lapply(1:length(block_indices), function(i) {
reverse_transform(preprocs[[i]], X[,block_indices[[i]]])
}))
}
}
)
class(ret) <- c("concat_pre_processor", "pre_processor")
ret
}
#' @export
print.prepper <- function(x,...) {
nn <- sapply(x$steps, function(x) x$name)
cat("preprocessor: ", paste(nn, collapse="->"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.