Nothing
#' @importFrom glmnet Cindex
cv.coxnet <- function(predmat,y,type.measure,weights,foldid,grouped){
## Note, all the work got done in buildPredmat.coxnetlist for deviance; a special case
devtrue=type.measure=="deviance"
nfolds = max(foldid)
if ((length(weights)/nfolds < 10) && !grouped) {
warning("Option grouped=TRUE enforced for cv.coxnet, since < 10 observations per fold",
call. = FALSE)
}
if(devtrue){
cvraw=attr(predmat,"cvraw")
status = y[, "status"]
N = nfolds - apply(is.na(cvraw), 2, sum)
weights = as.vector(tapply(weights * status, foldid, sum))
cvraw = cvraw/weights
}
else
{
nlambda=ncol(predmat)
nlams=rep(nlambda,nfolds)
cvraw = matrix(NA, nfolds, nlambda)
good = matrix(0, nfolds, nlambda)
for (i in seq(nfolds)) {
good[i, seq(nlams[i])] = 1
which = foldid == i
for (j in seq(nlams[i])) {
cvraw[i, j] = glmnet::Cindex(predmat[which,j],y[which, ], weights[which])
}
}
N = apply(good, 2, sum)
weights = tapply(weights, foldid, sum)
}
list(cvraw=cvraw,weights=weights,N=N,type.measure=type.measure,grouped=FALSE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.