R/cv.lognet.R

Defines functions cv.lognet

cv.lognet <- function(predmat,y,type.measure,weights,foldid,grouped){
    prob_min = 1e-05
    prob_max = 1 - prob_min
    nc = dim(y)
    if (is.null(nc)) {
        y = as.factor(y)
        ntab = table(y)
        nc = as.integer(length(ntab))
        y = diag(nc)[as.numeric(y), , drop=FALSE]
    }
    N = nrow(y)
    nfolds = max(foldid)
    if ((N/nfolds < 10) && type.measure == "auc") {
        warning("Too few (< 10) observations per fold for type.measure='auc' in cv.lognet; changed to type.measure='deviance'. Alternatively, use smaller value for nfolds",
                call. = FALSE)
        type.measure = cvtype("deviance", "lognet")
    }
    predmat=1/(1+exp(-predmat))
    nlambda=ncol(predmat)
    nlams=rep(nlambda,nfolds)
    if (type.measure == "auc") {
        cvraw = matrix(NA, nfolds, nlambda)
        good = matrix(0, nfolds, nlambda)
        for (i in seq(nfolds)) {
            good[i, seq(nlams[i])] = 1
            which = foldid == i
            for (j in seq(nlams[i])) {
                cvraw[i, j] = auc.mat(y[which, ], predmat[which,
                                                          j], weights[which])
            }
        }
        N = apply(good, 2, sum)
        weights = tapply(weights, foldid, sum)
        grouped=FALSE
    }
    else {
        ywt = apply(y, 1, sum)
        y = y/ywt
        weights = weights * ywt
        N = nrow(y) - apply(is.na(predmat), 2, sum)
        cvraw = switch(type.measure,
                       mse = (y[, 1] - (1 - predmat))^2 + (y[, 2] - predmat)^2,
                       mae = abs(y[, 1] - (1 - predmat)) + abs(y[, 2] - predmat),
                       deviance = {
                           predmat = pmin(pmax(predmat, prob_min), prob_max)
                           lp = y[, 1] * log(1 - predmat) + y[, 2] * log(predmat)
                           ly = log(y)
                           ly[y == 0] = 0
                           ly = drop((y * ly) %*% c(1, 1))
                           2 * (ly - lp)
                       },
                       class = y[, 1] * (predmat > 0.5) + y[, 2] * (predmat <= 0.5)
                       )
        }
list(cvraw=cvraw,weights=weights,N=N,type.measure=type.measure,grouped=grouped)
}

Try the multiview package in your browser

Any scripts or data that you put into this service are public.

multiview documentation built on April 3, 2023, 5:20 p.m.