Nothing
# expect_equal
# expect_error
# expect_match
# expect_true
# expect_false
###
test_that("require the pairwise keyword", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
suppressMessages({
m = glmer.mp(Y ~ X + (1|PId), data=df)
expect_error(glmer.mp.con(m, ~ X, adjust="none"), "'pairwise' is required on the left hand side of the ~ .")
})
})
###
test_that("require a glmerMod model", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b)),
Z = round(rnorm(60, mean=200, sd=40), digits=2)
)
suppressMessages({
m = lme4::lmer(Z ~ X + (1|PId), data=df)
expect_error(glmer.mp.con(m, pairwise ~ X, adjust="none"), "'model' must be created by glmer.mp.")
})
})
###
test_that("require a model with an alt factor", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
suppressMessages({
m = lme4::glmer(Y ~ X + (1|PId), data=df, family=binomial)
expect_error(glmer.mp.con(m, pairwise ~ X, adjust="none"), "'model' must be created by glmer.mp.")
})
})
###
test_that("ensure all contrast terms are in model", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X1 = factor(c(rep("a",30), rep("b",30))),
X2 = factor(c(rep("c",20), rep("d",20), rep("e",20))),
X3 = factor(c(rep("f",15), rep("g",15), rep("h",15), rep("i",15))),
Y = factor(c(a,b))
)
suppressMessages({
m = glmer.mp(Y ~ X1*X2 + (1|PId), data=df)
expect_error(glmer.mp.con(m, pairwise ~ X3, adjust="none"), "'formula' terms must be present in 'model'.")
})
})
###
test_that("ensure contrast terms are factors", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X1 = factor(c(rep("a",30), rep("b",30))),
X2 = round(rnorm(60, mean=40, sd=10), digits=1),
Y = factor(c(a,b))
)
suppressMessages({
m = glmer.mp(Y ~ X1*X2 + (1|PId), data=df)
expect_error(glmer.mp.con(m, pairwise ~ X1*X2, adjust="none"), "'formula' terms must be factors:")
})
})
###
test_that("disallow family arguments", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
expect_error(glmer.mp(Y ~ X + (1|PId), data=df, family=binomial), "'...' cannot contain a 'family' argument.")
})
###
test_that("match p-values for within-Ss. contrast", {
set.seed(123)
a = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.3, 0.7))
b = sample(c("yes","no"), size=30, replace=TRUE, prob=c(0.7, 0.3))
df = data.frame(
PId = factor(rep(1:30, times=2)),
X = factor(c(rep("a",30), rep("b",30))),
Y = factor(c(a,b))
)
suppressMessages({
m1 = lme4::glmer(Y ~ X + (1|PId), data=df, family=binomial)
m2 = glmer.mp(Y ~ X + (1|PId), data=df)
c1 = emmeans::emmeans(m1, pairwise ~ X, adjust="none")
c2 = glmer.mp.con(m2, pairwise ~ X, adjust="none")
expect_true(abs(as.data.frame(c1$contrasts)$p.value - c2$contrasts$p.value) <= 0.05)
})
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.