Nothing
test_that(
"test = 'normal'. ", {
# given
p <- 2
n <- 10
d <- 3
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p)), each = 6),
trait = rep(c("P1*P1", "P2*P1", "P2*P2", "P3*P1", "P3*P2", "P3*P3"), p),
p = c(0.4990573, 0.4478648, 0.9574136, 0.4662016, 0.4782672,
0.1381317, 0.5015375, 0.4619467, 0.1347061,
0.450717, 0.640529, 0.2410251)
)
set.seed(853)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
# when
mapit <- mvmapit(
t(X),
t(Y),
test = "normal", cores = 1, logLevel = "DEBUG"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"test = davies. ", {
# given
p <- 2
n <- 10
d <- 3
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p)), each = 6),
trait = rep(c("P1*P1", "P2*P1", "P2*P2", "P3*P1", "P3*P2", "P3*P3"), p),
p = c(0.01624319, NA, 0.6531582, NA, NA, 0.419213,
0.02694842, NA, 0.3977345, NA, NA, 0.490887)
)
set.seed(853)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
# when
mapit <- mvmapit(
t(X),
t(Y),
test = "davies", cores = 1, logLevel = "INFO"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"test = hybrid", {
# given
p <- 2
n <- 10
d <- 3
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p)), each = 6),
trait = rep(c("P1*P1", "P2*P1", "P2*P2", "P3*P1", "P3*P2", "P3*P3"), p),
p = c(0.4990573, 0.4478648, 0.9574136, 0.4662016, 0.4782672,
0.1381317, 0.5015375, 0.4619467, 0.1347061,
0.450717, 0.640529, 0.2410251)
)
set.seed(853)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
# when
mapit <- mvmapit(
t(X),
t(Y),
test = "hybrid", cores = 1, logLevel = "INFO"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"C is not NULL. ", {
# given
p <- 4
n <- 10
d <- 3
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p)), each = 6),
trait = rep(c("P1*P1", "P2*P1", "P2*P2", "P3*P1", "P3*P2", "P3*P3"), p),
p = c(
0.6876487, 0.2148062, 0.5640931, 0.1657485, 0.2837563, 0.5020969,
0.8920097, 0.9107812, 0.9787608, 0.6248188, 0.275113, 0.4994958,
0.5868067, 0.5128342, 0.3823134, 0.874728, 0.2352273, 0.688964,
0.3184337, 0.5047131, 0.6774045, 0.307193, 0.8257162, 0.5527816
)
)
set.seed(29)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
C <- matrix(
runif(n * n),
ncol = n
)
# when
mapit <- mvmapit(
t(X),
t(Y),
C = C, test = "hybrid", accuracy = 1e-05, cores = 1, logLevel = "ERROR"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"test = 'normal', C is not NULL. ", {
# given
p <- 4
n <- 10
d <- 3
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p)), each = 6),
trait = rep(c("P1*P1", "P2*P1", "P2*P2", "P3*P1", "P3*P2", "P3*P3"), p),
p = c(
0.6876487, 0.2148062, 0.5640931, 0.1657485, 0.2837563, 0.5020969,
0.8920097, 0.9107812, 0.9787608, 0.6248188, 0.275113, 0.4994958,
0.5868067, 0.5128342, 0.3823134, 0.874728, 0.2352273, 0.688964,
0.3184337, 0.5047131, 0.6774045, 0.307193, 0.8257162, 0.5527816
)
)
set.seed(29)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
C <- matrix(
runif(n * n),
ncol = n
)
# when
mapit <- mvmapit(
t(X),
t(Y),
C = C, test = "normal", cores = 1, logLevel = "ERROR"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"C is not NULL, test = 'davies'. ", {
# given
p <- 4
n <- 10
d <- 3
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p)), each = 6),
trait = rep(c("P1*P1", "P2*P1", "P2*P2", "P3*P1", "P3*P2", "P3*P3"), p),
p = c(
0.6977266, NA,0.4000627, NA, NA,0.3035032,
0.4784944, NA,0.2936015, NA, NA,0.4665585,
0.9274069, NA,0.1260672, NA, NA,0.1060084,
0.4216691, NA,0.1615168, NA, NA,0.1526920
)
)
set.seed(853)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
C <- matrix(
runif(n * n),
ncol = n
)
# when
mapit <- mvmapit(
t(X),
t(Y),
C = C, test = "davies", accuracy = 1e-05, cores = 1, logLevel = "ERROR"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"test = 'davies'. , d = 1", {
# given
p <- 10
n <- 4
d <- 1
pvalues <- tidyr::tibble(
id = as.character(c(1:p)),
trait = rep("P1", p),
p = c(
0.7080633,
0.0000000,
0.0000000,
0.1740376,
0.2393295,
0.2031174,
0.0000000,
0.1372735,
0.1017353,
0.2053481
)
)
set.seed(20)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
C <- matrix(
runif(n * n),
ncol = n
)
# when
mapit <- mvmapit(
t(X),
t(Y),
C = C, test = "davies", accuracy = 1e-05, cores = 1, logLevel = "ERROR"
)
# then
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-04)
}
)
test_that(
"test = 'hybrid'., d = 1 ", {
# given
p <- 2
n <- 10
d <- 1
pvalues <- tidyr::tibble(
id = rep(as.character(c(1:p))),
trait = rep(c("P1"), p),
p = c(0.499, 0.502 )
)
set.seed(853)
X <- matrix(
runif(p * n),
ncol = p
)
Y <- matrix(
runif(d * n),
ncol = d
)
# when
mapit <- mvmapit(
t(X),
t(Y),
test = "hybrid", cores = 1, logLevel = "DEBUG"
)
# then
print((mapit$pvalues))
expect_equal(mapit$pvalues, pvalues, tolerance = 1e-03)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.