R/generateStructure.r

Defines functions generateStructure

Documented in generateStructure

#' Generate a Factor Structure Matrix
#'
#' The \code{generateStructure} function returns a \emph{mjc} factor structure matrix.
#' The number of variables per major factor \emph{pmjc} is equal for each factor.
#' The argument \emph{pmjc} must be divisible by \emph{nVar}.
#' The arguments are strongly inspired from Zick and Velicer (1986, p. 435-436) methodology.
#'
#' @param var      numeric: number of variables
#' @param mjc      numeric: number of major factors (factors with practical significance)
#' @param pmjc     numeric: number of variables that load significantly on each major factor
#' @param loadings numeric: loadings on the significant variables on each major factor
#' @param unique   numeric: loadings on the non significant variables on each major factor
#' @return values  numeric matrix: factor structure
#'
#' @author Gilles Raiche \cr Centre sur les Applications des Modeles de
#' Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr
#' \email{raiche.gilles@@uqam.ca}
#' \cr \cr David Magis \cr Departement de mathematiques \cr Universite de Liege
#' \cr \email{David.Magis@@ulg.ac.be}
#' @export
#' @importFrom psych sim.structure
#' @seealso \code{\link{principalComponents}}, \code{\link{iterativePrincipalAxis}}, \code{\link{rRecovery}}
#' @references
#' Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013). Non-graphical solutions
#' for Cattell's scree test. Methodology, 9(1), 23-29.
#'
#' Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for
#' determining the number of components to retain. \emph{Psychological Bulletin, 99}, 432-442.
#' @keywords multivariate
#' @examples
#' # .......................................................
#'# Example inspired from Zwick and Velicer (1986, table 2, p. 437)
#'## ...................................................................
#'unique=0.2; loadings=0.5
#' zwick1 <- generateStructure(var=36, mjc=6, pmjc= 6, loadings=loadings,
#'                            unique=unique)
#'zwick2 <- generateStructure(var=36, mjc=3, pmjc=12, loadings=loadings,
#'                            unique=unique)
#'zwick3 <- generateStructure(var=72, mjc=9, pmjc= 8, loadings=loadings,
#'                            unique=unique)
#'zwick4 <- generateStructure(var=72, mjc=6, pmjc=12, loadings=loadings,
#'                            unique=unique)
#'sat=0.8
#'## ...................................................................
#'zwick5 <- generateStructure(var=36, mjc=6, pmjc= 6, loadings=loadings,
#'                            unique=unique)
#'zwick6 <- generateStructure(var=36, mjc=3, pmjc=12, loadings=loadings,
#'                            unique=unique)
#'zwick7 <- generateStructure(var=72, mjc=9, pmjc= 8, loadings=loadings,
#'                            unique=unique)
#'zwick8 <- generateStructure(var=72, mjc=6, pmjc=12, loadings=loadings,
#'                           unique=unique)
#'## ...................................................................
#'
#'# nsubjects <- c(72, 144, 180, 360)
#'# require(psych)
#'# Produce an usual correlation matrix from a congeneric model
#'nsubjects <- 72
#'mzwick5   <- psych::sim.structure(fx=as.matrix(zwick5), n=nsubjects)
#'mzwick5$r
#'
#'# Factor analysis: recovery of the factor structure
#'iterativePrincipalAxis(mzwick5$model, nFactors=6,
#'                       communalities="ginv")$loadings
#'iterativePrincipalAxis(mzwick5$r    , nFactors=6,
#'                       communalities="ginv")$loadings
#'factanal(covmat=mzwick5$model,         factors=6)
#'factanal(covmat=mzwick5$r    ,         factors=6)
#'
#'# Number of components to retain
#'eigenvalues  <- eigen(mzwick5$r)$values
#'aparallel    <- parallel(var      = length(eigenvalues),
#'                         subject  = nsubjects,
#'                         rep      = 30,
#'                         quantile = 0.95,
#'                         model="components")$eigen$qevpea
#'results <- nScree(x         = eigenvalues,
#'                  aparallel = aparallel)
#'results$Components
#'plotnScree(results)
#'
#'# Number of factors to retain
#'eigenvalues.fa  <- eigen(corFA(mzwick5$r))$values
#'aparallel.fa    <- parallel(var      = length(eigenvalues.fa),
#'                            subject  = nsubjects,
#'                            rep      = 30,
#'                            quantile = 0.95,
#'                            model="factors")$eigen$qevpea
#'results.fa <- nScree(x      = eigenvalues.fa,
#'                     aparallel = aparallel.fa,
#'                     model     ="factors")
#'results.fa$Components
#'plotnScree(results.fa)
#'# ......................................................
#'
#'
generateStructure <-
function(var, mjc, pmjc, loadings, unique) {

 if (var/mjc != ceiling(var/mjc)) stop("Bad pmjc value")

 fload <- matrix(unique, ncol=mjc, nrow=var)

 for (i in 1:mjc) {
  if (i == 1) fload[i:(pmjc),i] <- loadings
  min <- ((i-1)*pmjc+1)
  max <- ((i-1)*pmjc+pmjc)
  if (min > dim(fload)[1]) min <- dim(fload)[1]
  if (max > dim(fload)[1]) max <- dim(fload)[1]
  if (i > 1)  fload[min:max,i] <- loadings
  if (min > dim(fload)[1]) fload[dim(fload)[1],i] <- unique
  }

 return(data.frame(fload))
 }

Try the nFactors package in your browser

Any scripts or data that you put into this service are public.

nFactors documentation built on Oct. 10, 2022, 5:07 p.m.