classify_adopters | R Documentation |
Adopters are classified as in Valente (1995). In general, this is done depending on the distance in terms of standard deviations from the mean of Time of Adoption and Threshold.
classify_adopters(...)
classify(...)
## S3 method for class 'diffnet'
classify_adopters(graph, include_censored = FALSE, ...)
## Default S3 method:
classify_adopters(
graph,
toa,
t0 = NULL,
t1 = NULL,
expo = NULL,
include_censored = FALSE,
...
)
## S3 method for class 'diffnet_adopters'
ftable(x, as.pcent = TRUE, digits = 2, ...)
## S3 method for class 'diffnet_adopters'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
## S3 method for class 'diffnet_adopters'
plot(x, y = NULL, ftable.args = list(), table.args = list(), ...)
... |
Further arguments passed to the method. |
graph |
A dynamic graph. |
include_censored |
Logical scalar, passed to |
toa |
Integer vector of length |
t0 |
Integer scalar passed to |
t1 |
Integer scalar passed to |
expo |
Numeric matrix of size |
x |
A |
as.pcent |
Logical scalar. When |
digits |
Integer scalar. Passed to |
row.names |
Passed to |
optional |
Passed to |
y |
Ignored. |
ftable.args |
List of arguments passed to |
table.args |
List of arguments passed to |
Classifies (only) adopters according to time of adoption and threshold as described in Valente (1995). In particular, the categories are defined as follow:
For Time of Adoption, with toa
as the vector of times of adoption:
Early Adopters: toa[i] <= mean(toa) - sd(toa)
,
Early Majority: mean(toa) - sd(toa) < toa[i] <= mean(toa)
,
Late Majority: mean(toa) < toa[i] <= mean(toa) + sd(toa)
, and
Laggards: mean(toa) + sd(toa) < toa[i]
.
For Threshold levels, with thr
as the vector of threshold levels:
Very Low Thresh.: thr[i] <= mean(thr) - sd(thr)
,
Low Thresh.: mean(thr) - sd(thr) < thr[i] <= mean(thr)
,
High Thresh.: mean(thr) < thr[i] <= mean(thr) + sd(thr)
, and
Very High. Thresh.: mean(thr) + sd(thr) < thr[i]
.
By default threshold levels are not computed for left censored data. These
will have a NA
value in the thr
vector.
The plot method, plot.diffnet_adopters
, is a wrapper for the
plot.table
method. This generates a
mosaicplot
plot.
A list of class diffnet_adopters
with the following elements:
toa |
A factor vector of length |
thr |
A factor vector of length |
George G. Vega Yon
Valente, T. W. (1995). "Network models of the diffusion of innovations" (2nd ed.). Cresskill N.J.: Hampton Press.
Other statistics:
bass
,
cumulative_adopt_count()
,
dgr()
,
ego_variance()
,
exposure()
,
hazard_rate()
,
infection()
,
moran()
,
struct_equiv()
,
threshold()
,
vertex_covariate_dist()
# Classifying brfarmers -----------------------------------------------------
x <- brfarmersDiffNet
diffnet.toa(x)[x$toa==max(x$toa, na.rm = TRUE)] <- NA
out <- classify_adopters(x)
# This is one way
round(
with(out, ftable(toa, thr, dnn=c("Time of Adoption", "Threshold")))/
nnodes(x[!is.na(x$toa)])*100, digits=2)
# This is other
ftable(out)
# Can be coerced into a data.frame, e.g. ------------------------------------
str(classify(brfarmersDiffNet))
ans <- cbind(
as.data.frame(classify(brfarmersDiffNet)), brfarmersDiffNet$toa
)
head(ans)
# Creating a mosaic plot with the medical innovations -----------------------
x <- classify(medInnovationsDiffNet)
plot(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.