| vertex_covariate_dist | R Documentation |
Computes covariate distance between connected vertices
vertex_covariate_dist(graph, X, p = 2)
vertex_mahalanobis_dist(graph, X, S)
graph |
A square matrix of size |
X |
A numeric matrix of size |
p |
Numeric scalar. Norm to compute |
S |
Square matrix of size |
Faster than dist, these functions compute distance metrics
between pairs of vertices that are connected (otherwise skip).
The function vertex_covariate_dist is the simil of dist
and returns p-norms (Minkowski distance). It is implemented as follows (for
each pair of vertices):
%
D_{ij} = \left(\sum_{k=1}^K \left|X_{ik} - X_{jk}\right|^{p} \right)^{1/p}\mbox{ if }graph_{i,j}\neq 0
In the case of mahalanobis distance, for each pair of vertex (i,j), the
distance is computed as follows:
%
D_{ij} = \left( (X_i - X_j)\times S \times (X_i - X_j)' \right)^{1/2}\mbox{ if }graph_{i,j}\neq 0
A matrix of size n\times n of class dgCMatrix. Will
be symmetric only if graph is symmetric.
George G. Vega Yon
Mahalanobis distance. (2016, September 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:31, September 27, 2016, from https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=741488252
mahalanobis in the stats package.
Other statistics:
bass,
classify_adopters(),
cumulative_adopt_count(),
dgr(),
ego_variance(),
exposure(),
hazard_rate(),
infection(),
moran(),
struct_equiv(),
threshold()
Other dyadic-level comparison functions:
matrix_compare(),
vertex_covariate_compare()
# Distance (aka p norm) -----------------------------------------------------
set.seed(123)
G <- rgraph_ws(20, 4, .1)
X <- matrix(runif(40), ncol=2)
vertex_covariate_dist(G, X)[1:5, 1:5]
# Mahalanobis distance ------------------------------------------------------
S <- var(X)
M <- vertex_mahalanobis_dist(G, X, S)
# Example with diffnet objects ----------------------------------------------
data(medInnovationsDiffNet)
X <- cbind(
medInnovationsDiffNet[["proage"]],
medInnovationsDiffNet[["attend"]]
)
S <- var(X, na.rm=TRUE)
ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.