NetGSAq: "Quick" Network-based Gene Set Analysis

View source: R/NetGSAq.R

NetGSAqR Documentation

"Quick" Network-based Gene Set Analysis

Description

Quick version of NetGSA

Usage

NetGSAq(x, group, pathways, lambda_c = 1, file_e = NULL, file_ne = NULL,
    lklMethod="REHE", cluster = TRUE, sampling = TRUE, sample_n = NULL,
    sample_p = NULL, minsize=5, eta=0.1, lim4kappa=500)

Arguments

x

See x argument in NetGSA

group

See group argument in NetGSA

pathways

See pathways argument in NetGSA

lambda_c

See lambda_c argument in prepareAdjMat

file_e

See file_e argument in prepareAdjMat

file_ne

See file_ne argument in prepareAdjMat

lklMethod

See lklMethod argument in NetGSA

cluster

See cluster argument in prepareAdjMat

sampling

See sampling argument in NetGSA

sample_n

See sample_n argument in NetGSA

sample_p

See sample_p argument in NetGSA

minsize

See minsize argument in NetGSA

eta

See eta argument in NetGSA

lim4kappa

See lim4kappa argument in NetGSA

Details

This is a wrapper function to perform weighted adjacency matrix estimation and pathway enrichment in one step. For more details see ?prepareAdjMat and ?NetGSA.

Value

A list with components

results

A data frame with pathway names, pathway sizes, p-values and false discovery rate corrected q-values, and test statistic for all pathways.

beta

Vector of fixed effects of length kp, the first k elements corresponds to condition 1, the second k to condition 2, etc.

s2.epsilon

Variance of the random errors \epsilon.

s2.gamma

Variance of the random effects \gamma.

graph

List of components needed in plot.NetGSA.

Author(s)

Michael Hellstern

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 32(20):165–3174. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/bioinformatics/btw410")}

Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments. Statistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.nlm.nih.gov/20597848/.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology, 16(3), 407-426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/

See Also

prepareAdjMat, netEst.dir, netEst.undir

Examples


# Example takes ~3 minutes to run depending on computer
## load the data
data("breastcancer2012_subset")

## consider genes from just 2 pathways
genenames    <- unique(c(pathways[["Adipocytokine signaling pathway"]], 
                         pathways[["Adrenergic signaling in cardiomyocytes"]]))
sx           <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]

out_clusterq <- NetGSAq(sx, group, pathways_mat[c(1, 2), rownames(sx)])


netgsa documentation built on Nov. 14, 2023, 5:09 p.m.