Nothing
#' Calculate rankogram
#'
#' @description
#' This function calculates the probabilities of each treatment being
#' at each possible rank and the SUCRAs (Surface Under the Cumulative
#' RAnking curve) in frequentist network meta-analysis.
#'
#' @param x An object of class \code{\link{netmeta}}.
#' @param nsim Number of simulations.
#' @param common A logical indicating to compute ranking probabilities
#' and SUCRAs for the common effects model.
#' @param random A logical indicating to compute ranking probabilities
#' and SUCRAs for the random effects model.
#' @param small.values A character string specifying whether small
#' treatment effects indicate a beneficial (\code{"desirable"}) or
#' harmful (\code{"undesirable"}) effect, can be abbreviated.
#' @param cumulative.rankprob A logical indicating whether cumulative
#' ranking probabilities should be printed.
#' @param keep.samples A logical indicating whether to keep the generated
#' samples.
#' @param nchar.trts A numeric defining the minimum number of
#' characters used to create unique treatment names.
#' @param warn.deprecated A logical indicating whether warnings should
#' be printed if deprecated arguments are used.
#' @param \dots Additional arguments (ignored).
#'
#' @details
#' We derive a matrix showing the probability of each treatment being
#' at each possible rank. To this aim, we use resampling from a
#' multivariate normal distribution with estimated network effects as
#' means and corresponding estimated variance covariance matrix. We
#' then summarise them using the ranking metric SUCRAs (Surface Under
#' the Cumulative RAnking curve).
#'
#' @return
#' An object of class \code{rankogram} with corresponding \code{print}
#' and \code{plot} function. The object is a list containing the
#' following components:
#' \item{ranking.matrix.common}{Numeric matrix giving the probability
#' of each treatment being at each possible rank for the common
#' effects model.}
#' \item{ranking.common}{SUCRA values for the common effects model.}
#' \item{ranking.matrix.random}{Numeric matrix giving the probability
#' of each treatment being at each possible rank for the random
#' effects model.}
#' \item{ranking.random}{SUCRA values for the random effects model.}
#' \item{cumrank.matrix.common}{Numeric matrix giving the cumulative
#' ranking probability of each treatment for the
#' common effects model.}
#' \item{cumrank.matrix.random}{Numeric matrix giving the cumulative
#' ranking probability of each treatment for the random effects
#' model.}
#' \item{nsim, common, random}{As defined above},
#' \item{small.values, x}{As defined above},
#'
#' @author Theodoros Papakonstantinou \email{dev@@tpapak.com}, Guido
#' Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @seealso \code{\link{netmeta}}, \code{\link{netrank}},
#' \code{\link{plot.rankogram}}, \code{\link[metadat]{dat.woods2010}}
#'
#' @references
#' Salanti G, Ades AE, Ioannidis JP (2011):
#' Graphical methods and numerical summaries for presenting results
#' from multiple-treatment meta-analysis: an overview and tutorial.
#' \emph{Journal of Clinical Epidemiology},
#' \bold{64}, 163--71
#'
#' @examples
#' pw1 <- pairwise(treatment, event = r, n = N, studlab = author,
#' data = dat.woods2010, sm = "OR")
#' net1 <- netmeta(pw1, small.values = "desirable")
#'
#' set.seed(1909) # get reproducible results
#' ran1 <- rankogram(net1, nsim = 100)
#' ran1
#' print(ran1, cumulative.rankprob = TRUE)
#'
#' plot(ran1)
#'
#' @rdname rankogram.netmeta
#' @method rankogram netmeta
#' @export
rankogram.netmeta <- function(x, nsim = gs("nsim"),
common = x$common, random = x$random,
small.values = x$small.values,
cumulative.rankprob = FALSE,
keep.samples = FALSE,
nchar.trts = x$nchar.trts,
warn.deprecated = gs("warn.deprecated"),
...) {
#
#
# (1) Check for netmeta object and upgrade object
#
#
chkclass(x, "netmeta")
chksuitable(x, "Rankograms", "netmetabin")
x <- updateversion(x)
#
#
# (2) Check other arguments
#
#
chknumeric(nsim, min = 1, length = 1)
#
small.values <- setsv(small.values)
#
chklogical(cumulative.rankprob)
chklogical(keep.samples)
#
if (is.null(nchar.trts))
nchar.trts <- 666
chknumeric(nchar.trts, length = 1)
#
# Check for deprecated arguments in '...'
#
args <- list(...)
chklogical(warn.deprecated)
#
missing.common <- missing(common)
common <- deprecated(common, missing.common, args, "comb.fixed",
warn.deprecated)
common <- deprecated(common, missing.common, args, "fixed",
warn.deprecated)
chklogical(common)
#
random <-
deprecated(random, missing(random), args, "comb.random", warn.deprecated)
chklogical(random)
#
# Additional checks for crossnma and multinma objects (and return results)
#
if (inherits(x, c("netmeta.crossnma", "netmeta.multinma"))) {
if (!x$keep.samples)
stop("Input for argument 'x' is a netmeta.", x$method,
" object without samples; recreate ", x$method,
" object with argument 'keep.samples = TRUE'.",
call. = FALSE)
#
if (common != x$common)
warning("Argument 'common = ", x$common, "' as netmeta.", x$method,
" object is based on ", if (x$common) "common" else "random",
" effects model.",
call. = FALSE)
#
if (random != x$random)
warning("Argument 'random = ", x$random, "' as netmeta.", x$method,
" object is based on ", if (x$random) "random" else "common",
" effects model.",
call. = FALSE)
#
#
if (!missing(nsim) & x$keep.samples)
warning("Argument 'nsim' ignored for netmeta.", x$method, " object.",
call. = FALSE)
#
common <- x$common
random <- x$random
#
return(rankogram(x$samples$d,
pooled = if (common) "common" else "random",
small.values = small.values,
cumulative.rankprob = cumulative.rankprob,
keep.samples = keep.samples,
nchar.trts = nchar.trts))
}
#
#
# (3) Resampling to calculate ranking probabilities and SUCRAs
#
#
sucras.common <- ranking.matrix.common <- cumrank.matrix.common <- NULL
sucras.random <- ranking.matrix.random <- rank.cum.random <- NULL
#
if (common) {
res.c <- ranksampling(x, nsim, "common", small.values, keep.samples)
#
sucras.common <- res.c$sucras
ranking.matrix.common <- res.c$rankogram
cumrank.matrix.common <- res.c$cumrank
#
samples.common <- res.c$samples
}
#
if (random) {
res.r <- ranksampling(x, nsim, "random", small.values, keep.samples)
#
sucras.random <- res.r$sucras
ranking.matrix.random <- res.r$rankogram
rank.cum.random <- res.r$cumrank
#
samples.random <- res.r$samples
}
#
#
# (4) Create rankogram object
#
#
res <- list(ranking.common = sucras.common,
ranking.matrix.common = ranking.matrix.common,
cumrank.matrix.common = cumrank.matrix.common,
samples.common =
if (common & keep.samples) samples.common else NULL,
#
ranking.random = sucras.random,
ranking.matrix.random = ranking.matrix.random,
cumrank.matrix.random = rank.cum.random,
samples.random =
if (random & keep.samples) samples.random else NULL,
#
nsim = nsim,
#
common = common,
random = random,
small.values = small.values,
cumulative.rankprob = cumulative.rankprob,
#
nchar.trts = nchar.trts,
x = x,
call = match.call(),
version = packageDescription("netmeta")$Version
)
#
# Backward compatibility
#
res$fixed <- common
#
res$ranking.fixed <- sucras.common
res$ranking.matrix.fixed <- ranking.matrix.common
res$cumrank.matrix.fixed <- cumrank.matrix.common
#
class(res) <- "rankogram"
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.