Nothing
# Data documentation for Roxygen
#' Bell Labs 1router data from Cao et al. (2000)
#'
#' Data from 4-node network with star topology collected from Bell Labs; used in
#' Cao et al. (2000).
#'
#' @section Objects:
#' The list bell.labs, which contains several objects:
#' \itemize{
#' \item \code{A}, the routing matrix for this network (truncated for full row
#' rank)
#' \item \code{df}, a data.frame with all data
#' \item \code{X}, a matrix of origin-destination flows formatted for analysis
#' \item \code{Y}, a matrix of link loads formatted for analysis
#' \item \code{tvec}, a vector of times
#' }
#' In this data, we have \code{A \%*\% t(X) == t(Y)}.
#'
#' @section Variables:
#' The list bell.labs contains the following:
#' \itemize{
#' \item The routing matrix \code{A}. The columns of this matrix correspond to
#' individual OD flows (the columns of X), and its rows correspond to individual
#' link loads (the columns of Y).
#' \item The data.frame \code{df}, containing
#' \itemize{
#' \item value, level of traffic recorded
#' \item nme, name of flow or load
#' \item method, whether flow was directly observered or inferred
#' (all observed)
#' \item time, time of observation
#' \item od, flag for origin-destination vs. link loads
#' \item orig, origin of flow or load
#' \item dest, destination of flow or load
#' \item node, node involved in flow or load
#' }
#' \item The OD matrix X. Columns correspond to individual OD flows, and the rows
#' correspond to observations.
#' \item The link load matrix Y. Columns of the Y matrix correspond to individual
#' link loads, and the rows correspond to observations.
#' \item The vector tvec, containing the time in decimal hours since midnight for
#' each observation.
#' }
#'
#' @docType data
#' @name bell.labs
#' @usage bell.labs
#' @references J. Cao, D. Davis, S. Van Der Viel, and B. Yu.
#' Time-varying network tomography: router link data.
#' Journal of the American Statistical Association, 95:1063-75, 2000.
#' @keywords datasets
#' @family bell.labs
NULL
#' CMU data from Blocker & Airoldi (2011)
#'
#' Data from the 12 node CMU network used in Blocker & Airoldi (2011). The OD
#' flows are actual, observed traffic from a CMU network. The topology does not,
#' however, correspond to the original network due to security considerations.
#'
#' @section Objects:
#' The list cmu, which contains several objects:
#' \itemize{
#' \item \code{A}, the routing matrix for this network (truncated for full row
#' rank)
#' \item \code{X}, a matrix of origin-destination flows formatted for analysis
#' \item \code{Y}, a matrix of link loads formatted for analysis
#' \item \code{A.full}, the routing matrix for this network without
#' truncatation for full row rank)
#' \item \code{Y.full}, a matrix of link loads corresponding to code{A.full}
#' }
#' In this data, we have \code{A \%*\% t(X) == t(Y)} and
#' \code{A.full \%*\% t(X) == t(Y.full)}
#'
#' @section Variables:
#' The list cmu contains the following:
#' \itemize{
#' \item The routing matrix \code{A}. The columns of this matrix correspond to
#' individual OD flows (the columns of X), and its rows correspond to individual
#' link loads (the columns of Y).
#' \item The OD matrix X. Columns correspond to individual OD flows, and the rows
#' correspond to observations.
#' \item The link load matrix Y. Columns of the Y matrix correspond to individual
#' link loads, and the rows correspond to observations.
#' \item The routing matrix \code{A.full}. This is the complete routing matrix
#' before reduction for full row-rank.
#' \item The link load matrix Y.full, corresponding to A.full.
#' }
#'
#' @docType data
#' @name cmu
#' @usage cmu
#' @references A.W. Blocker and E.M. Airoldi. Deconvolution of mixing
#' time series on a graph. Proceedings of the Twenty-Seventh Conference Annual
#' Conference on Uncertainty in Artificial Intelligence (UAI-11) 51-60, 2011.
#' @keywords datasets
#' @family cmu
NULL
#' Abilene data from Fang et al. (2007)
#'
#' Data from the 12 node Abilene network from Fang et al. (2007). Both the OD
#' flows and the topology correspond to the actual network. This is the X1
#' dataset from the given paper.
#'
#' @section Objects:
#' The list abilene, which contains several objects:
#' \itemize{
#' \item \code{A}, the routing matrix for this network (truncated for full row
#' rank)
#' \item \code{X}, a matrix of origin-destination flows formatted for analysis
#' \item \code{Y}, a matrix of link loads formatted for analysis
#' \item \code{A.full}, the routing matrix for this network without
#' truncatation for full row rank)
#' \item \code{Y.full}, a matrix of link loads corresponding to code{A.full}
#' }
#' In this data, we have \code{A \%*\% t(X) == t(Y)} and
#' \code{A.full \%*\% t(X) == t(Y.full)}
#'
#' @section Variables:
#' The list abilene contains the following:
#' \itemize{
#' \item The routing matrix \code{A}. The columns of this matrix correspond to
#' individual OD flows (the columns of X), and its rows correspond to individual
#' link loads (the columns of Y).
#' \item The OD matrix X. Columns correspond to individual OD flows, and the rows
#' correspond to observations.
#' \item The link load matrix Y. Columns of the Y matrix correspond to individual
#' link loads, and the rows correspond to observations.
#' \item The routing matrix \code{A.full}. This is the complete routing matrix
#' before reduction for full row-rank.
#' \item The link load matrix Y.full, corresponding to A.full.
#' }
#'
#' @docType data
#' @name abilene
#' @usage abilene
#' @references J. Fang, Y. Vardi, and C.-H. Zhang. An iterative tomogravity
#' algorithm for the estimation of network traffic. In R. Liu, W. Strawderman,
#' and C.-H. Zhang, editors, Complex Datasets and Inverse Problems: Tomography,
#' Networks and Beyond, volume 54 of Lecture Notes-Monograph Series. IMS, 2007.
#' @keywords datasets
#' @family abilene
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.