Nothing
#' Fit a Structural Equation Model (SEM) with both network and non-network data by transforming nonnetwork data into paired values corresponding to network latent distance pairs.
#' @importFrom latentnet ergmm
#' @import latentnet
#' @param model A model string specified in lavaan model syntax that includes relationships among the network and non-network variables.
#' @param data A list containing the data. The list has two named components, "network" and "nonnetwork"; "network" is a list of named adjacency matrices for the network data, and "nonnetwork" is the dataframe of non-network covariates.
#' @param type "difference" for using the difference between the network statistics of the two actors as the edge covariate; "average" for using the average of the network statistics of the two actors as the edge covariate.
#' @param latent.dim The number of network latent dimensions to use in extracting latent positions of network nodes.
#' @param netstats.rescale TRUE or FALSE, whether to rescale the network statistics to have mean 0 and standard deviation 1, default to FALSE.
#' @param data.rescale TRUE or FALSE, whether to rescale the whole dataset (with restructured network and nonnetwork data) to have mean 0 and standard deviation 1 when fitting it to SEM, default to FALSE.
#' @param ordered Parameter same as "ordered" in the lavaan sem() function; whether to treat data as ordinal.
#' @param sampling.weights Parameter same as "sampling.weights" in the lavaan sem() function; whether to apply weights to data.
#' @param group Parameter same as "group" in the lavaan sem() function; whether to fit a multigroup model.
#' @param cluster Parameter same as "cluster" in the lavaan sem() function; whether to fit a cluster model.
#' @param constraints Parameter same as "constraints" in the lavaan sem() function; whether to apply constraints to the model.
#' @param WLS.V Parameter same as "WLS.V" in the lavaan sem() function; whether to use WLS.V estimator.
#' @param NACOV Parameter same as "NACOV" in the lavaan sem() function; whether to use NACOV estimator.
#' @param ... Optional arguments for the sem() function.
#' @return A networksem object containing the updated model specification string with the reconstructed network statistics as variables, a lavaan SEM output object, and a latentnet ergm object.
#' @export
#' @examples
#' \donttest{
#' set.seed(10)
#' nsamp = 20
#' lv1 <- rnorm(nsamp)
#' net <- ifelse(matrix(rnorm(nsamp^2) , nsamp, nsamp) > 1, 1, 0)
#' lv2 <- rnorm(nsamp)
#' nonnet <- data.frame(x1 = lv1*0.5 + rnorm(nsamp),
#' x2 = lv1*0.8 + rnorm(nsamp),
#' x3 = lv2*0.5 + rnorm(nsamp),
#' x4 = lv2*0.8 + rnorm(nsamp))
#'
#' model <-'
#' lv1 =~ x1 + x2
#' lv2 =~ x3 + x4
#' net ~ lv1
#' lv2 ~ net
#' '
#' data = list(network = list(net = net), nonnetwork = nonnet)
#' set.seed(100)
#' res <- sem.net.edge.lsm(model = model, data = data, latent.dim = 1)
#' summary(res)
#' }
sem.net.edge.lsm <- function(model=NULL, data=NULL, type="difference",
latent.dim = 2, data.rescale = FALSE,
ordered = NULL, sampling.weights = NULL,
group = NULL, cluster = NULL, netstats.rescale = FALSE,
constraints = "", WLS.V = NULL, NACOV = NULL,
...){
requireNamespace("latentnet", quietly = TRUE)
## checking proper input
if(is.null(model)){
stop("required argument model is not specified.")
}
if(is.null(data)){
stop("required argument data is not specified.")
}
params <- c(as.list(environment()), list(...))
## get the variable names in the model
model.info <- lavParseModelString(model)
model.var <- unique(c(model.info$lhs, model.info$rhs))
## non-network data variable names
data.nonnetwork.var <- names(data$nonnetwork)
## network data variable names
if (!is.null(data$network)){
data.network.var <- names(data$network)
}
## find the network variables in the model
model.network.var <- data.network.var[data.network.var %in% model.var]
latent.network <- model.network.var
data_edge = data.frame(row_actor=rep(NA, nrow(data$nonnetwork)^2), col_actor=rep(NA, nrow(data$nonnetwork)^2))
for (i in 1:length(model.network.var)){
data_edge[model.network.var[i]]=NA
}
if (length(model.network.var)>0){
for (i in 1:nrow(data$nonnetwork)){
for (j in 1:nrow(data$nonnetwork)){
data_edge[j+(i-1)*nrow(data$nonnetwork), "row_actor"]=i
data_edge[j+(i-1)*nrow(data$nonnetwork), "col_actor"]=j
for (netind in 1:length(model.network.var)){
data_edge[j+(i-1)*nrow(data$nonnetwork),model.network.var[netind]]=data$network[[netind]][i,j]
}
}
}
}
latent.vars <- list()
lsm.fits <- list()
fit.prev <- NULL
cov.mani <- list()
edgeatt <- list()
model.lavaanify <- lavaan::lavaanify(model)
## get the use specified model information
model.user <- model.lavaanify[model.lavaanify$user==1, ]
## change nonnetwork variable to be pairwise
variables.to.change=c()
for (i in 1:nrow(model.user)){
## check if the variable on the lhs is a nonnetwork variable
if (model.user$lhs[i] %in% colnames(data$nonnetwork) && !model.user$rhs[i] %in% colnames(data$nonnetwork)){
variables.to.change <- c(variables.to.change, model.user$lhs[i])
}
if (model.user$rhs[i] %in% colnames(data$nonnetwork) && !model.user$lhs[i] %in% colnames(data$nonnetwork)){
variables.to.change <- c(variables.to.change, model.user$rhs[i])
}
if (model.user$rhs[i] %in% colnames(data$nonnetwork) && model.user$lhs[i] %in% colnames(data$nonnetwork)){
variables.to.change <- c(variables.to.change, model.user$rhs[i])
variables.to.change <- c(variables.to.change, model.user$lhs[i])
}
}
for (i in 1:length(variables.to.change)){
data_edge[variables.to.change[i]]=NA
}
if (length(variables.to.change)>0){
for (vind in 1:length(variables.to.change)){
v_row <- rep(data$nonnetwork[variables.to.change[vind]][[1]], each = nrow(data$nonnetwork))
v_col <- rep(data$nonnetwork[variables.to.change[vind]][[1]], nrow(data$nonnetwork))
if (type=="difference"){
data_edge[variables.to.change[vind]] <- abs(v_row - v_col)
}else if (type=="average"){
data_edge[variables.to.change[vind]] <- (v_row + v_col)/2
}
}
}
## estimate network latent positions
lsm.fits <- list()
for (i in 1:length(latent.network)){
fit <- latentnet::ergmm(network::network(data$network[[latent.network[i]]]) ~ euclidean(d = latent.dim))
lsm.fits[[i]] <-fit
latent.vars[[latent.network[i]]] <- c()
for (dimind in 1:latent.dim){
distsum <- 0
for (dimind in 1:latent.dim){
distsum = distsum + outer(fit$mcmc.mle$Z[,dimind], fit$mcmc.mle$Z[,dimind], "-")^2
}
dists <- array(t(sqrt(distsum)))
data_edge[paste0(model.network.var[i], ".dists")] <- dists
if (netstats.rescale){
data_edge[paste0(model.network.var[i], ".dists")] <- scale(dists, center = TRUE, scale = TRUE)
}
latent.vars[[model.network.var[i]]] <- c(paste0(model.network.var[i], ".dists"))
}
}
# print(lsm.fits)
#print(model.network.stat.var.list)
## reconstruct the path model with the network variables
## replace the network variable name with the network variable stats name
## lavaanify the model
model.lavaanify <- lavaan::lavaanify(model)
## get the use specified model information
model.user <- model.lavaanify[model.lavaanify$user==1, ]
## now process each part of the user specified model
model.to.remove.index <- NULL
model.to.add <- ""
model.to.remove.index <- NULL
model.to.add <- ""
for (i in 1:nrow(model.user)){
## check if left is network with LSM, remake
if (model.user$lhs[i] %in% latent.network && !model.user$rhs[i] %in% latent.network){
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add <- latent.vars[[model.user$lhs[i]]]
for (j in 1:length(model.stat.var.to.add)){
model.temp <- paste0("\n ", model.stat.var.to.add[j], model.user$op[i], model.user$rhs[i])
model.to.add <- paste0(model.to.add, model.temp)
}
}
## check if right is network with LSM and left is other variables
if (model.user$rhs[i] %in% latent.network && !model.user$lhs[i] %in% latent.network){
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add <- latent.vars[[model.user$rhs[i]]]
for (j in 1:length(model.stat.var.to.add)){
model.temp <- paste0("\n ", model.user$lhs[i], model.user$op[i], model.stat.var.to.add[j])
model.to.add <- paste0(model.to.add, model.temp)
}
}
## check if both lhs and rhs are network variables
if (model.user$rhs[i] %in% model.network.var && model.user$lhs[i] %in% model.network.var){
## if it is, record the index i and create new model items
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add.rhs <- latent.vars[[model.user$rhs[i]]]
model.stat.var.to.add.lhs <- latent.vars[[model.user$lhs[i]]]
for (j in 1:length(model.stat.var.to.add.rhs)){
for (k in 1:length(model.stat.var.to.add.lhs)){
model.temp <- paste0("\n", model.stat.var.to.add.lhs[j], model.user$op[i], model.stat.var.to.add.rhs[k])
model.to.add <- paste0(model.to.add, model.temp)
}
}
}
}
model.remove.network.var <- model.user[-model.to.remove.index, ]
model.non.network.var <- ""
if (nrow(model.remove.network.var)>0){
for (i in 1:nrow(model.remove.network.var)){
model.non.network.var.temp <- paste0(paste0(model.remove.network.var[i, c('lhs', 'op', 'rhs')], collapse = ' '))
model.non.network.var <- paste0(model.non.network.var.temp, "\n", model.non.network.var)
}
}
model.full <- paste0(model.non.network.var, "\n", model.to.add)
lavparams <- list()
for (i in 1:length(params)){
if (names(params)[i] %in% names(lavOptions())){
lavparams[[names(params[i])]] <- params[[i]]
}
}
if (data.rescale){
for (i in 1:ncol(data_edge)){
if (is.numeric(data_edge[,i])){
data_edge[,i] <- scale(data_edge[,i], center = TRUE, scale = TRUE)
}
}
}
lavparams[["data"]] <- data_edge
lavparams[["model"]] <- model.full
lavparams[["ordered"]] <- ordered
lavparams[["sampling.weights"]] <- sampling.weights
lavparams[["group"]] <- group
lavparams[["cluster"]] <- cluster
lavparams[["constraints"]] <- constraints
lavparams[["WLS.V"]] <- WLS.V
lavparams[["NACOV"]] <- NACOV
model.res <- do.call(what="sem", args=c(lavparams))
obj <- list(model=model.full, estimates=list(sem.es=model.res,lsm.es=lsm.fits), data = data_edge)
class(obj) <- "networksem"
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.