spatialnoise | R Documentation |
Generates a spatially correlated noise dataset with specified dimensions and standard deviation.
spatialnoise(dim, sigma, nscan, method = c("corr", "gammaRF", "gaussRF"),
type=c("gaussian","rician"), rho = 0.75, FWHM = 4, gamma.shape = 6,
gamma.rate = 1, vee=1, template, verbose = TRUE)
dim |
A vector specifying the dimensions of the image. |
sigma |
The standard deviation of the noise. |
nscan |
The number of scans in the dataset. |
method |
Method specifying the type of spatial correlation. Default is |
type |
Type of distribution if |
rho |
If |
FWHM |
If |
gamma.shape |
If |
gamma.rate |
If |
vee |
If |
template |
An array representing the anatomical structure or mask with dimensions equal to dim. |
verbose |
Logical indicating if warnings should be printed. |
The function generates spatially correlated noise. When method=="corr"
, AR(1) voxelwise correlations are introduced.
If method=="gaussRF"
of method=="gammaRF"
, respectively a Gaussian Random Field or a Gamma Random Field is created. The result is a noise array with specified dimensions and desired standard deviation.
The generation of the random fields is based on the function Sim.3D.GRF
from J.L. Marchini in the package AnalyzeFMRI.
An array containing the noise with dimensions specified in dim and nscan.
J. Durnez, B. Moerkerke, M. Welvaert
temporalnoise
, lowfreqdrift
, physnoise
, tasknoise
, systemnoise
, Sim.3D.GRF
d <- c(10,10,10)
sigma <- 5
nscan <- 100
rhospat <- 0.7
out <- spatialnoise(d, sigma, nscan, method="corr", rho=rhospat, verbose=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.