Description Note Author(s) References See Also Examples
Training of neural networks using the backpropagation, resilient backpropagation with (Riedmiller, 1994) or without weight backtracking (Riedmiller, 1993) or the modified globally convergent version by Anastasiadis et al. (2005). The package allows flexible settings through custom-choice of error and activation function. Furthermore, the calculation of generalized weights (Intrator O & Intrator N, 1993) is implemented.
This work has been supported by the German Research Foundation
(DFG: http://www.dfg.de) under grant scheme PI 345/3-1.
Stefan Fritsch, Frauke Guenther guenther@leibniz-bips.de,
Maintainer: Frauke Guenther guenther@leibniz-bips.de
Riedmiller M. (1994) Rprop - Description and Implementation Details. Technical Report. University of Karlsruhe.
Riedmiller M. and Braun H. (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of the IEEE International Conference on Neural Networks (ICNN), pages 586-591. San Francisco.
Anastasiadis A. et. al. (2005) New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64, pages 253-270.
Intrator O. and Intrator N. (1993) Using Neural Nets for Interpretation of Nonlinear Models. Proceedings of the Statistical Computing Section, 244-249 San Francisco: American Statistical Society (eds).
plot.nn
for plotting of the neural network.
gwplot
for plotting of the generalized weights.
compute
for computation of the calculated network.
confidence.interval
for calculation of a confidence interval
for the weights.
prediction
for calculation of a prediction.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | AND <- c(rep(0,7),1)
OR <- c(0,rep(1,7))
binary.data <- data.frame(expand.grid(c(0,1), c(0,1), c(0,1)), AND, OR)
print(net <- neuralnet(AND+OR~Var1+Var2+Var3, binary.data, hidden=0,
rep=10, err.fct="ce", linear.output=FALSE))
XOR <- c(0,1,1,0)
xor.data <- data.frame(expand.grid(c(0,1), c(0,1)), XOR)
print(net.xor <- neuralnet(XOR~Var1+Var2, xor.data, hidden=2, rep=5))
plot(net.xor, rep="best")
data(infert, package="datasets")
print(net.infert <- neuralnet(case~parity+induced+spontaneous, infert,
err.fct="ce", linear.output=FALSE, likelihood=TRUE))
gwplot(net.infert, selected.covariate="parity")
gwplot(net.infert, selected.covariate="induced")
gwplot(net.infert, selected.covariate="spontaneous")
confidence.interval(net.infert)
Var1 <- runif(50, 0, 100)
sqrt.data <- data.frame(Var1, Sqrt=sqrt(Var1))
print(net.sqrt <- neuralnet(Sqrt~Var1, sqrt.data, hidden=10,
threshold=0.01))
predict(net.sqrt, data.frame(Var1 = (1:10)^2))
Var1 <- rpois(100,0.5)
Var2 <- rbinom(100,2,0.6)
Var3 <- rbinom(100,1,0.5)
SUM <- as.integer(abs(Var1+Var2+Var3+(rnorm(100))))
sum.data <- data.frame(Var1,Var2,Var3, SUM)
print(net.sum <- neuralnet(SUM~Var1+Var2+Var3, sum.data, hidden=1,
act.fct="tanh"))
prediction(net.sum)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.