Nothing
#' NIDP summary plot of NeuroimaGene object
#'
#' Generate overview plot of the neuroimagene object according to nidps
#' @param ng_obj NeuroimaGene Object
#' @param maxNidps maximum number of NIDPs to visualize. default=30
#' @param title optional title tag for the plot
#' @param shortnames optional boolean tag for simplified names. Default to TRUE
#' @param mag boolean to present effect sizes by magnitude rather than as a vector. Default to TRUE
#' @param verbose print runtime messages to R console. Default to FALSE
#' @keywords neuroimaging
#' @export
#' @import data.table ggplot2
#' @returns a ggplot class object detailing mean effect size magnitude per NIDP, colored by brain region
#' @examples
#' gene_list <- c('TRIM35', 'PROSER3', 'EXOSC6', 'PICK1', 'UPK1A', 'ESPNL', 'ZIC4')
#' ng <- neuroimaGene(gene_list, atlas = NA, mtc = 'BH', vignette = TRUE)
#' plot_nidps(ng)
#'
plot_nidps <- function(ng_obj, maxNidps = 30, title = NA, shortnames = TRUE, mag = TRUE, verbose = FALSE) {
# initialize column names as null variables
zscore <- meanZ <- gwas_phenotype <- secondary <- NIDP <- NULL
if(is.na(title)){
tag <- ''
} else {
tag <- paste(' ',as.character(title))
}
if(!(is.integer(maxNidps) || is.double(maxNidps))) {
stop('maxNidps must be of data.type: integer or double', call. = F)
}
ng_summ <- ng_obj[, list(meanZ = mean(zscore), sign = sign(mean(zscore))),
by = c('gwas_phenotype')]
ng <- data.table::setDT(merge(ng_summ, anno, by = 'gwas_phenotype'))
if (length(unique(ng$gwas_phenotype)) > maxNidps ) {
if(verbose){message(paste('WARNING: Greater than', maxNidps, 'NIDPs detected in input data. Plot will only show the top', maxNidps, 'NIDPs ranked by effect size magnitude'))}
nidps <- ng[order(-abs(meanZ))][1:maxNidps,]$gwas_phenotype
ng <- ng[gwas_phenotype %in% nidps,]
}
if(shortnames == FALSE) {
ng <- ng[, -c('NIDP')]
setnames(ng, 'gwas_phenotype', 'NIDP')
}
if(mag == TRUE) {
ng$meanZ <- abs(ng$meanZ)
axis_label <- 'Normalized effect size magnitude'
} else {
axis_label = 'Normalized effect size'
}
gn_plot <- ggplot2::ggplot(ng, aes(x = NIDP, y = meanZ, color= secondary, group = as.character(sign))) +
geom_point(aes(shape=as.character(sign)), size = 4) + #size=as.character(gn_ct))) +
theme_light()+
ggtitle(paste0("Mean Effect Size per NIDP across\nall genes", tag)) +
xlab('NIDPs') +
ylab(axis_label) +
theme_light() +
theme(axis.text.x = element_text(angle = 0, size = 11, hjust = 0.5, vjust =0.5),
axis.text.y = element_text(size = 11),
plot.title = element_text(hjust = 0.5),
plot.title.position = "plot",
) +
scale_shape_discrete(name ="sign",
breaks=c("1", "-1"),
labels=c("pos", "neg")) +
coord_flip()
return(gn_plot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.