gld | R Documentation |
Density, distribution function, quantile function and random generation for
the gamma-Lomax distribution with parameters shapes
and scale
.
dgld(x, a, alpha, beta = 1, log = FALSE)
pgld(q, a, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)
qgld(p, a, alpha, beta = 1, lower.tail = TRUE)
rgld(n, a, alpha, beta = 1)
x , q |
vector of quantiles. |
a , alpha |
are shape parameters. |
beta |
a scale parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
The Gamma-Lomax distribution shape
parameters
a
and \alpha
, and scale
parameter is \beta
,
has density
f\left( x\right) =\frac{\alpha \beta ^{\alpha }}
{\Gamma \left( a\right)\left( \beta +x\right) ^{\alpha +1}}\left\{ -\alpha
\log \left( \frac{\beta }{\beta +x}\right) \right\} ^{a-1},
where
x>0,~a,\alpha ,\beta >0.
dgld
gives the density, pgld
gives the distribution
function, qgld
gives the quantile function and rgld
generates
random deviates.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation , 82(8), 1191-1206.
library(new.dist)
dgld(1, a=2, alpha=3, beta=4)
pgld(1, a=2,alpha=3,beta=4)
qgld(.8, a=2,alpha=3,beta=4)
rgld(10, a=2,alpha=3,beta=4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.