| sod | R Documentation |
Density, distribution function, quantile function and random generation for the Standard Omega distribution.
dsod(x, alpha, beta, log = FALSE)
psod(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qsod(p, alpha, beta, lower.tail = TRUE)
rsod(n, alpha, beta)
x, q |
vector of quantiles. |
alpha, beta |
are parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
The Standard Omega distribution with parameters
\alpha and \beta, has density
f\left( x\right) =\alpha \beta x^{\beta -1}\frac{1}{1-x^{2\beta }}
\left( \frac{1+x^{\beta }}{1-x^{\beta }}\right) ^{-\alpha /2},
where
0<x<1,~\alpha ,\beta >0.
dsod gives the density, psod gives the distribution
function, qsod gives the quantile function and rsod generates
random deviates.
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
library(new.dist)
dsod(0.4, alpha=1, beta=2)
psod(0.4, alpha=1, beta=2)
qsod(.8, alpha=1, beta=2)
rsod(10, alpha=1, beta=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.