kd | R Documentation |
Density, distribution function, quantile function and random generation for
Kumaraswamy distribution with shape
parameters.
dkd(x, lambda, alpha, log = FALSE)
pkd(q, lambda, alpha, lower.tail = TRUE, log.p = FALSE)
qkd(p, lambda, alpha, lower.tail = TRUE)
rkd(n, lambda, alpha)
x , q |
vector of quantiles. |
alpha , lambda |
are non-negative shape parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Kumaraswamy distribution with non-negative shape
parameters \alpha
and \lambda
has density
f\left( x\right) =\alpha \lambda x^{\lambda -1}\left( 1-x^{\lambda }
\right)^{\alpha -1},
where
0<x<1,~~\alpha ,\lambda >0.
dkd
gives the density, pkd
gives the distribution
function, qkd
gives the quantile function and rkd
generates
random deviates.
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
library("new.dist")
dkd(0.1,lambda=2,alpha=3)
pkd(0.5,lambda=2,alpha=3)
qkd(.8,lambda=2,alpha=3)
rkd(10,lambda=2,alpha=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.