wgd | R Documentation |
Density, distribution function, quantile function and random generation for the Weighted Geometric distribution.
dwgd(x, alpha, lambda, log = FALSE)
pwgd(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qwgd(p, alpha, lambda, lower.tail = TRUE)
rwgd(n, alpha, lambda)
x , q |
vector of quantiles. |
alpha , lambda |
are parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
The Weighted Geometric distribution with parameters \alpha
and
\lambda
, has density
f\left( x\right) =\frac{\left( 1-\alpha \right)
\left( 1-\alpha ^{\lambda+1}\right) }{1-\alpha ^{\lambda }}\alpha ^{x-1}
\left( 1-\alpha ^{\lambda x}\right),
where
x\in \mathbb {N} =1,2,...~,~\lambda >0~and~0<\alpha <1.
dwgd
gives the density, pwgd
gives the distribution
function, qwgd
gives the quantile function and rwgd
generates
random deviates.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
pwgd(1,alpha=.2,lambda=3)
qwgd(.98,alpha=.2,lambda=3)
rwgd(10,alpha=.2,lambda=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.